Human and viral gene detection in routine paraffin embedded tissue by in situ hybridisation with biotinylated probes: viral localisation in herpes encephalitis

J BURNS, D R M REDFERN, M M ESIRI, J O'D McGEE

From the University of Oxford, Nuffield Department of Pathology, John Radcliffe Hospital, Oxford

Summary A simple reproducible protocol for detecting multiple copy human genes and viral DNA in routine formalin fixed paraffin embedded tonsil and brain, by in situ hybridisation with biotinylated probes, is described. The protocol consists of digestion of formalin fixed paraffin sections, with 0.4% pepsin in 0.01 M hydrochloric acid for one hour at 37°C, followed by hybridisation with biotinylated probes. The biotinylated probes used for establishing the conditions for in situ localisation of DNA were total placental DNA (TG1), pHY 2.1 (a Y chromosome probe), and herpes simplex virus I and II. In human male tonsil TG1 labelled all nuclei and pHY 2.1 reacted only with nuclear Y bodies. In herpes encephalitis the virus was detected in some glial cells and neurones.

Biotinylated nucleic acid probes hybridised in situ to Carnoy or methanol and acetic acid fixed cryostat or cyto genetic preparations can be visualised rapidly by immunoperoxidase histochemistry, in which the peroxidase reaction product is amplified by gold and silver precipitation.1 A protocol that extends this system to routine formalin fixed paraffin embedded material would be of value, because the large stocks of archival material filed in pathology departments would be available for retrospective studies.

Angerer and Angerer2 localised poly (A)4 RNA in glutaraldehyde fixed paraffin embedded sea urchin embryos by in situ hybridisation with radiolabelled probes. Viral DNA was visualised in formalin fixed paraffin embedded tissues by biotin3 and radiolabelled probes.4 These methods, however, are not readily applicable in routine clinical laboratories, because the temperature of fixation must be rigidly controlled2 and the prehybridisation protocols entail several reactions.3 4

In this paper we describe a simple and reproducible protocol for detecting repetitive mammalian genes and viral DNA sequences in human tissues routinely fixed in formalin and embedded in paraffin wax. This was compared with other methods for multiple copy gene detection.

Accepted for publication 8 May 1986

Material and methods

Preparation of tissue sections
Optimal conditions for DNA detection by in situ hybridisation with biotinylated DNA were established on male tonsil. Fresh, postoperative, male tonsillar tissue was divided into five pieces. One piece was frozen immediately in liquid nitrogen and stored at −70°C; 5 μm cryostat sections were mounted on multiphot slides (CH Henley, Essex, United Kingdom), precoated with 0.1% aqueous poly-l-lysine hydrobromide, molecular weight = > 300 k (Sigma, United Kingdom), containing 0.1% Tween 20 (v/v) (BDH, United Kingdom). Sections were air dried and fixed sequentially in Carnoy’s fluid (ethanol: chloroform: acetic acid = 6:3:1, v/v) at 22°C for 10 minutes, washed in ethanol at 22°C for 10 minutes, air dried, wrapped, and stored in aluminium foil at −70°C. A second piece was fixed in Carnoy’s fluid at 22°C for four hours, processed to and embedded in paraffin wax, and 5 μm sections cut and mounted as described above; these were dried at 37°C for three hours, baked at 60°C for 24 to 48 hours, and stored at 22°C for two to 24 weeks. The three other pieces of tonsil were fixed in 4% formaldehyde containing 0.15 M sodium chloride, pH 7.4 (formalin) for 24, 48, and 72 hours, respectively, at 22°C. After processing to and embedding in paraffin wax sections were cut at 5 μm,
mounted, dried, baked, and stored as for paraffin sections fixed in Carnoy’s fluid.

Temporal and frontal lobe brain biopsy specimens from two cases of herpes encephalitis were fixed in formalin for 24 hours and embedded in paraffin. Herpes simplex viral (HSV) antigen was shown by immunohistochemistry5 with a monoclonal antibody to herpes simplex.

Cryostat sections stored at −70°C were air dried at 22°C, treated with 1% H2O2 in methanol (v/v) for 30 minutes at 22°C to block endogenous peroxidase activity, rinsed in ethanol (two × five minutes), and air dried before in situ hybridisation. Paraffin sections were dewaxed in xylene (two × 10 minutes), rinsed in 99% ethanol (two × 10 minutes), and endogenous peroxidase activity blocked (see above); these sections were washed in tap water (10–15 minutes), and rinsed in distilled water (five to 10 minutes) before proteolytic digestion and in situ hybridisation.

Protocols for in situ prehybridisation

Three protocols for in situ prehybridisation for paraffin sections were used for comparison with the method developed in this laboratory. Sections were treated with: 1 and 10 μg/ml proteinase K (Sigma, United Kingdom) in 100 mmol/l Tris-hydrochloric acid, 50 mmol/l edetic acid buffer (pH 8.0) at 37°C for 30 minutes, with or without acetylation2; sequential treatment of sections with 0.02 M hydrochloric acid, 0.01% Triton X-100 (v/v), and 2.0 mg/ml “pronase” (Protease, type VII, Sigma, United Kingdom) in 50 mmol/l Tris-hydrochloric acid (pH 7.4) for five minutes at 22°C; sequential treatment was with 0.2 M hydrochloric acid, triethanolamine, 2 × SSC (1 × SSC = 0.15 mol/l sodium chloride, 0.015 mol/l sodium citrate) at 70°C, 0.05% digitonin (w/v), 5 μg/ml proteinase K (Sigma, United Kingdom).4 After these procedures sections were rinsed in distilled water (two × five minutes), dehydrated in absolute ethanol, and air dried before in situ hybridisation. The method of Angerer and Angerer2 was applied to sections of male tonsil fixed in Carnoy’s fluid for four hours and embedded in paraffin and to sections of paraffin embedded male tonsil that had been fixed in formalin for 24 hours. The prehybridisation in situ efficiency of the two other protocols3 4 was tested only on sections of male tonsil fixed in formalin for 24 hours and embedded in paraffin.

The method developed in this laboratory for formalin fixed paraffin embedded tissue was as follows: sections from male tonsil fixed in formalin for 24, 48, and 72 hours and embedded in paraffin were used to establish the optimal conditions for pepsin-hydrochloric acid unmasking of DNA. Pepsin (3200–3800 units/μg protein; Sigma, United Kingdom) was used at concentrations ranging from 0.01 to 16.0 mg/ml dissolved in hydrochloric acid; the hydrochloric acid molarity tested ranged from 0.01 to 0.2 M. Digestion of sections was performed at 37°C for one hour. Thereafter, sections were washed in distilled water (three × five minutes), rinsed (two × five minutes) in 99% ethanol, absolute ethanol (two × five minutes), and air dried before in situ hybridisation. Undigested and sections treated with hydrochloric acid only were also studied.

Having established optimal conditions for unmasking DNA prehybridisation, in situ treatment of brain sections consisted only of digestion with pepsin (4 mg/ml) in 0.01 M hydrochloric acid for one hour at 37°C.

Biotinylation of probes

Total human placental DNA (TG1) (Chan VT-W, Fleming KA, McGee J’OD, unpublished observations) pHy 2.1 (a Y chromosome probe),6 and a β-globin probe7 were labelled with biotin-11-dUTP by nick translation using Enzo (New York, United States of America) and Amersham (United Kingdom) nick translation kits.8 Labelled probes were purified by ethanol precipitation. The degree of dUTP biotin substitution (for thymidyl residues) for each probe varied from 30–40%. The average size of each biotinylated probe ranged from 150–250 bases determined by Southern blot analysis on glyoxal gels.9 Labelled DNA (20 μg/ml) in 1 mmol/l edetic acid, 5 mmol/l Tris-hydrochloric acid (pH 7.3) containing 400 μg/ml of sheared herring sperm DNA (type XIV, Sigma, United Kingdom) was stored at −70°C. A biotinylated HSV probe containing HSV I and II fragments (12 μg/ml) was obtained from Enzo (New York, United States of America) and stored at 4°C.

In situ hybridisation

The procedure used was essentially that of Burns et al.1 with minor modifications. In brief, 10 μl of hybridisation buffer (50% formamide (Sigma), 5% dextran sulphate (BDH, United Kingdom), 2 × SSC (pH 7.4) containing 20 ng of biotinylated DNA, 400 ng of sheared herring sperm DNA, 0.1 mmol/l edetic acid, 0.5 mmol/l Tris-hydrochloric acid (pH 7.3) was added to multispot wells and covered with glass coverslips 14 mm in diameter. The modifications to the original procedure1 comprised a 10-fold increase in probe concentration, a reduction in dextran sulphate concentration, and the addition of carrier DNA to the hybridisation mix. Tissue sections and probes were denatured simultaneously in a hot air oven for 10 minutes at 73°C in sealed Terasaki plates containing about 1 ml of deionised water. The sections were hybridised for 16 hours at 42°C in a hot air incubator. Slides were washed (two × 10 minutes) at 22°C in 2 × SSC and immersed for 15 minutes in
Fig 1(a) All preparations illustrated were weakly counterstained with haematoxylin and eosin. Frozen section of male tonsil fixed in Carnoy’s solution and hybridised with biotinylated total human genomic DNA (TGI). As expected, virtually all nuclei in germinal centre and mantle zone are labelled.

Fig 1(b) Similar area probed with biotinylated pHY 2-1. Almost all nuclei contain Y body stained black.

5% bovine serum albumin (v/v), 0·1% Triton X-100 (v/v) 0·1 M phosphate buffered 0·15 M sodium chloride, pH 7·4, (PBT). The biotinylated DNA was detected by indirect immunocytochemistry. Sections were treated with rabbit antibiotin IgG (Enzo, United States of America), diluted 1/200 in PBT, in a moist chamber at 37°C for one hour, washed in PBT for 15 minutes at 22°C, and incubated at 37°C for one hour in peroxidase labelled swine antirabbit IgG (Dako-patts, Denmark), diluted 1/50 in PBT. Sections were washed twice in 0·1 M phosphate buffered 0·15 M sodium chloride (PBS) containing 0·1% Tween 20 for 15 minutes, rinsed in PBS, and reacted for four minutes with 0·5 mg/ml 3,3’-diaminobenzidine tetrahydrochloride (DAB, Polysciences, New York) in PBS containing 0·012% (v/v) hydrogen peroxide, and washed in distilled water. Sections were sequentially incubated and washed at 22°C in 2·5 mmol/l aqueous sodium chloroaurate (BDH), pH 2·3, for five minutes, water for five minutes, and 0·1 mol/l aqueous sodium sulphide (BDH), pH 7·5, for five minutes and washed in water for five minutes. Silver was precipitated on DAB complexes by incubating the slides at 22°C for one to five minutes in silver reagent, as described previously; all of the reagents for silver amplification were obtained from BDH (United Kingdom).

After gold and silver amplification the slides were washed in 1·0% (v/v) aqueous acetic acid (two × 10 minutes), washed in water for 30 minutes at 22°C, and counterstained by haematoxylin and eosin, dehydrated, cleared in xylol, and mounted in DPX.

Results

In cryostat sections of male tonsil fixed in Carnoy’s fluid biotinylated TGI and pHY 2-1 were readily visualised. The reaction product for TGI was spread across each nucleus whereas, as previously shown, pHY 2-1 was confined to nuclear Y bodies (figs 1a and b). Both probes were also visualised in paraffin sections fixed in Carnoy’s fluid. With pHY 2-1, however, the sections required pretreatment with proteinase K to obtain a result similar in intensity to that seen in cryostat sections; TGI detection did not require proteolysis before in situ hybridisation (fig 2).

Three published methods for visualising nucleic acids in aldehyde fixed paraffin sections by in situ hybridisation were tested. TGI and pHY 2-1 were not detectable in sections pretreated by two of these methods. TGI, however, was visualised by the method of Blum et al., but pHY 2-1 was not detected (fig 3); the intensity of the reaction with TGI was weak by
Human and viral gene detection by in situ hybridisation with biotinylated probes

Fig 2 Carnoy fixed paraffin embedded male tonsil probed with TG1 without prehybridisation proteolysis. This result is similar to that seen in fig 1(a).

Fig 3 Formalin fixed paraffin embeded male tonsil probed with TG1 after prehybridisation protocol.* By comparison with intensity of figs 1(a) and 2, reaction is greatly diminished.

Fig 4 Formalin fixed paraffin embedded male tonsil digested with pepsin (4 mg/ml) in 0.01 M hydrochloric acid and probed with TG1. Staining intensity is better than that shown in fig 1(a).

Fig 5 As for fig 4, but probed with biotinylated pH 2.1. Y bodies are evident as block spots in most cells. Intensity of reaction product is diminished by comparison with that of fig 1(b).
comparison with that obtained in paraffin sections fixed in Carnoy's fluid (figs 2 and 3).

The pepsin-hydrochloric acid prehybridisation in situ schedule applied to sections of male tonsil formalin fixed for 24, 48, or 72 hours and paraffin embedded produced nuclear staining with TG1 at all concentrations of pepsin-hydrochloric acid tested. The strongest reaction for both TG1 and pHY 2·1 was obtained with 4 mg/ml pepsin in 0·2 M hydrochloric acid, but unlike TG1 preparations, there was considerable loss of stroma with concomitant loss of histological detail with pHY 2·1 (not shown). A compromise between acceptable histological detail and signal:noise ratio for TG1 and pHY 2·1 was found with a concentration of 4 mg/ml pepsin in 0·01 M hydrochloric acid (figs 4–7). The staining result for pHY 2·1 was mildly diminished in intensity in sections of tonsil fixed in formalin for 72 hours by comparison with that fixed for 24–48 hours (not shown). No signal was detected with biotinylated TG1 or pHY 2·1 in formalin fixed paraffin sections not treated with pepsin-hydrochloric acid, or with hydrochloric acid only.

After treatment with pepsin-hydrochloric acid biotinylated HSV probe bound to nuclei of some glial cells and neurones in the two cases of herpes encepha-
Human and viral gene detection by in situ hybridisation with biotinylated probes

Variations in stringency washes after hybridisation were not investigated in these experiments.

Discussion

In situ hybridisation brings together single stranded DNA (denatured DNA) or mRNA with a labelled complementary nucleic acid sequence (probe) to form an intracellular hybrid. The probe, and hence the sequence of interest, is shown by autoradiography, if radiolabelled, or alternatively, with immunocytochemistry, if biotin or N-acetoxy-2-acetyl aminofluorene (AAF) labelled. Because of the intrinsic disadvantages of autoradiography, time consumption, radioactivity, background noise, poor microscopic resolution, and incompatibility with many staining methods, alternative means of labelling and rapid detection of nucleic acid probes are necessary if in situ hybridisation is to become available for routine diagnostic use. Of the alternative non-radiolabelled in situ hybridisation systems available, the biotin system introduced by Ward’s group has been used for detecting mammalian or viral nucleic acid from that previously described. Variations in stringency washes after hybridisation were not investigated in these experiments.

Fig 9 Similar field to that shown in fig 9. HSV antigen is shown in nuclei and cytoplasm of two glial cells (arrows) by indirect immunoperoxidase histochemistry with monoclonal antibody to HSV.

Fig 10 Field similar to that shown in fig 8, except that this was probed with TG1. Compared with those in fig 8 all nuclei are labelled indicating specificity of reaction in fig 8.
acids sequences in cytogenic, cryostat, or formalin fixed paraffin embedded material.15-21 The initial detection systems for biotinylated probes, however, did not give the sensitivity of radiolabelled probes12 on filters, but an appreciable increase in sensitivity has been reported.9 This problem has also been overcome for in situ hybridisation in cells and tissue sections by amplifying the end product of the biotin detection system with a gold-sulphide silver protocol.1 This allows for clear in situ visualisation of multiple copy genes in Carnoy or methanol acetic acid fixed cryostat or cytogenic preparations at the light or scanning microscopic level, or both.19 More importantly, it permits single gene assignment on chromosomes22-23.

Several groups of workers have used various protocols for rendering formalin-paraffin sections amenable to in situ hybridisation studies. These protocols usually entail the sequential treatment of sections with 0-01 to 0-2 M hydrochloric acid, pronase, or proteinase K digestion, and sometimes also include treatment with Triton X-100, digitonin, or 2 × SSC at 70°C.3,4,22 These protocols entail numerous prehybridisation manoeuvres and give inconsistent results both in our hands and those of others.3,24 Both pronase and proteinase K can contain protease contaminants and DNase or RNase, or both, any one of which may account for the inconsistency of these methods.

The pepsin-hydrochloric acid prehybridisation in situ protocol described was previously used for unmasking antigens in routine formalin-paraffin material.26 The present study clearly shows that multiple copy human and viral DNA sequences are readily detected in intact cells by in situ hybridisation of formalin-paraffin material with biotinylated probes after pepsin-hydrochloric acid digestion (figs 4-9). The exact level of sensitivity—that is, gene copy number detectable—remains to be determined. From the experiments with \(\beta\)-globin, however, it is evident that the two copies of this gene in interphase cells cannot be visualised by this procedure. None the less, TG1 and pH2 2-1 were useful for detecting very high copy number genes in this study; there are about 2100 copies of the gene detected by pH2 2-1 in male cells. These probes are useful for studying reagent variables for in situ hybridisation efficiency. For example, neither probe was effective on undigested formalin-paraffin processed material or after treatment with hydrochloric acid by itself. The demonstration of both probes in paraffin sections fixed in Carnoy’s fluid with or without mild proteinase K digestion excluded, at least for TG1 and pH2 2-1, any deleterious effect of dehydration, and clearing and embedding reagents on the accessibility to hybridisation of these biotinylated probes.

The finding that HSV DNA was detectable after treatment with pepsin-hydrochloric acid of brain biopsy specimens will facilitate the investigation of the role of viruses in neurological disease and other diseases in which viruses have been implicated, such as cervical cancer. Sequences similar to those of HSV have been reported in mammalian cells.26 This, however, does not explain the present results, because only selected cells hybridise with the HSV probe, and this has a distribution similar to HSV antigen, as shown here and elsewhere.5

The choice of tonsil and brain tissue sections as model tissues for study was useful from a purely technical point of view. Both tissues contain very little supportive connective tissue stroma, which may facilitate retention of sections to slides during enzyme digestion, denaturing, and hybridisation treatments. No loss of sections was noted, however, when using the recommended pepsin-hydrochloric acid protocol detailed in this study.

The rationale behind treatment with pepsin-hydrochloric acid is hypothetical. Treatment of cells with acid removes histones27 and may facilitate denaturation of DNA. Pepsin does not remove histones

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Male tonsil</th>
<th>Brain biopsy specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixative</td>
<td>Carnoy’s fluid</td>
<td>Carnoy’s fluid</td>
</tr>
<tr>
<td>Sections</td>
<td>Cryostat</td>
<td>Paraffin</td>
</tr>
<tr>
<td>Probes:</td>
<td>Methoda</td>
<td>Methodb</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TG1</td>
<td>++ + +</td>
<td>Negative</td>
</tr>
<tr>
<td>pH2 2-1</td>
<td>++ + +</td>
<td>++ +</td>
</tr>
<tr>
<td>(\beta)-globin†</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>HSV I + II</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

aPepsin (4 mg/ml) in 0-01 M hydrochloric acid for one hour at 37°C; b\(\beta\)-globin probe does not detect the corresponding gene in interphase cells but does detect \(\beta\)-globin on chromosome 11 in metaphase spreads.24
but digests nuclear tryptophan rich acidic proteins present on chromosomes. The combination of these two independent activities of hydrochloric acid and pepsin may explain their combined efficiency in rendering DNA in routine formalin-paraffin sections available for in situ hybridisation.

Addendum

Brigati et al have since published a modification of their original method for viral localisation in paraffin sections.

Miss S Taylor gave technical assistance. Miss L Watts typed the manuscript. The work was supported in part by grants from the Cancer Research Campaign (JO'DMG), and DMR was supported by an ICI funded Royal College of Pathologists Studentship.

References

23 McGee JO'D, Jonasson J, Burns J, Chan VT-W. β-globin and c-Ha-ras-1 genes are located on p15.5 and p14/15 of chromosome II, respectively, in normal subjects. J Pathol 1986;148:63A.

Requests for reprints to: Professor JO'D McGee, Nuffield Department of Pathology, Level 1, Headington, Oxford OX3 9DU, England.
Human and viral gene detection in routine paraffin embedded tissue by in situ hybridisation with biotinylated probes: viral localisation in herpes encephalitis.

J Burns, D R Redfern, M M Esiri and J O McGee

doi: 10.1136/jcp.39.10.1066

Updated information and services can be found at: http://jcp.bmj.com/content/39/10/1066

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/