Letters to the Editor

Link between pulmonary megakaryocytes and cardiovascular and respiratory disease

We are delighted that the recent study of Sharma and Talbot¹ requires support for our original hypothesis² that pulmonary platelet production could be the “missing link” between cardiovascular and respiratory disease.

Although the presence of pulmonary megakaryocytes does not prove that the lungs are the only site of thrombopoiesis, the wealth of additional evidence cited in our earlier study³ and reiterated by Sharma and Talbot¹ makes pulmonary platelet production seem highly likely. In particular, the number of megakaryocytes/ml of blood in the pulmonary artery needed to maintain a normal steady state platelet count⁴ and the number observed in central venous blood of man⁵ is of the same order of magnitude. Hence bone marrow production is not necessary for platelet or megakaryocyte homeoeostasis. Furthermore, pulmonary thrombopoiesis allows a simple mechanism of platelet production to be invoked. The process of sequential random binary division of megakaryocyte cytoplasm provides a physical analogue of mitosis,⁶ which can be simulated on a computer.⁷ No quantitative evidence to support the theory of bone marrow thrombopoiesis has been proposed.

It is worth noting that the statistical comparisons based on the stereological procedure advocated by Sharma and Talbot¹ should be treated with caution. Larger three dimensional structures—for example, megakaryocytes with cytoplasm—are more likely to be sectioned than smaller structures (naked nuclei). Unless the appropriate correction factors are applied,⁸ the counting procedure will be biased toward the larger structure. In addition, the total number of pulmonary megakaryocytes is also influenced by their size. A characteristic of the polyploid megakaryocyte is its ability to increase in size in response to stimulation,⁹ resulting in an increased probability of pulmonary trapping.¹⁰ Megakaryocytes are larger than normal in cardiovascular disease⁹ and in experimental models of atherosclerosis.¹⁰ Hence under these and similar pathological conditions, more pulmonary megakaryocytes are likely to be seen even though megakaryocyte counts in central venous blood may be normal. This may explain the pulmonary megakaryocyte count differences reported in hospital and forensic necropsies.¹¹

A TROWBRIDGE*,
D SLATER†
J MARTIN‡

*Department of Medical Physics and Clinical Engineering,
The University of Sheffield,
The Royal Hallamshire Hospital,
Sheffield S10 2JF.

References
8 Slater DN, Trowbridge EA, Martin JF. The megakaryocyte in thrombocytopenia: a microscopic study which supports the theory that platelets are produced in the pulmonary circulation. Thromb Res 1983;31:163–86.

Technical methods

quantitation of antigens by single radial immuno-diffusion.

Requests for reprints to: Mr EM Kearney, Department of Chemical Pathology and Metabolic Disorders, St Thomas’s Hospital, Lambeth Palace Road, London SE1 7EH, England.
Letters to the Editor

Drs Talbot and Sharma reply:

We agree with Drs Trowbridge, Slater, and Martin that our estimates of the numbers of megakaryocytes trapped in the pulmonary capillary bed would be even higher if we had applied a correction for variations in megakaryocyte size.

Although our own data cannot prove the hypothesis that the lungs are the principal site of thrombopoiesis, there are persuasive arguments for this. Evidence which has not to our knowledge been considered, is provided by the blood of lungless vertebrates such as fish, which lack platelets, their role being performed by large nucleated cells known as thrombocytes, which resemble the other blood cells in cytological appearance.

IC TALBOT
G SHARMA
Department of Pathology,
Clinical Sciences Building,
Leicester Royal Infirmary LE2 5LX

Reference

Peripheral thrombocytopenia in human parvovirus infection

Human parvovirus (HPV) causes aplastic crises in patients with hereditary or acquired haemolytic anaemias. HPV induced red cell aplasia in patients without a shortened red cell survival is difficult to establish because of the transient nature of the erythroblastopenia. On the other hand, a moderate thrombocytopenia of central origin seems common during these aplastic crises.

We describe here the first documented case of peripheral thrombocytopenia with HPV associated aplastic crisis in a patient without shortened red cell survival.

Case history

A five year old girl was admitted to hospital because she had had petechial purpura on her face and legs for 24 hours after an episode of upper respiratory tract infection. Oral examination showed the presence of a superficial haemorrhagic bulla. Neither lymphadenopathy or splenomegaly was detected. The patient was febrile. The blood test showed normal haemoglobin concentration and white cell count but a platelet count of 8×10^9/L, although it had been 304×10^9/L 15 months previously. Bone marrow examination performed on the day of admission showed an increased number of megakaryocytes, suggesting a peripheral origin of thrombocytopenia and an absence of erythroid precursors. The reticulocyte count was then found to be less than 5×10^9/L. This erythroblastopenia suggested a recent HPV infection, which was confirmed by the presence of anti-HPV IgM in the serum.

Other recent infections were excluded by tests for infectious mononucleosis, cytomegalo virus, rubella, mumps, hepatitis A and B. Treatment with high dose intravenous gammaglobulin (daily dose of 30 g) was started immediately. Two days later the platelet count remained low (figure) and gammaglobulin was discontinued. Consequently, corticosteroids (prednisone 2 mg/kg/day) were given, and the platelet count returned to normal within three days. Haemoglobin concentration and white cell count remained normal throughout the evolution. The daily dose of steroids was progressively reduced after one month and the treatment finally discontinued after two months. Further controls showed normal platelet counts.

Discussion

This observation suggests that HPV may be associated with intense peripheral platelet destruction. Haemoglobin concentration was not modified as a consequence of an aplastic crisis, as anaemia does not occur as long as red cell survival is normal; the transient nature of the erythroblastopenia is responsible for the difficulty in detecting red cell aplasia in normal people infected with HPV. To our knowledge, these findings of an HPV associated aplastic crisis in a patient free of chronic haemolytic anaemia have not been reported previously. None the less, the HPV associated aplastic crisis seems to be totally different from the “transient erythroblastopenia of childhood,” whose mechanism remains to be explained.

References

Figure Haematological data in patient studied.
Link between pulmonary megakaryocytes and cardiovascular and respiratory disease.
A Trowbridge, D Slater and J Martin

doi: 10.1136/jcp.40.4.468

Updated information and services can be found at:
http://jcp.bmj.com/content/40/4/468.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/