Urinary excretion of 2, 3-dinor-6-keto prostaglandin F$_{1\alpha}$ and platelet thromboxane formation during ethanol withdrawal in alcoholics

J Neiman, M Hillbom,* G Benthin, E E Anggaard†

From the Departments of Clinical and Experimental Alcohol and Drug Addiction Research, Karolinska Institute, Stockholm, Sweden, the *Department of Neurology, University of Helsinki, Finland, and †Bristol Myers Pharmaceuticals, Uxbridge

SUMMARY The excretion of 2,3-dinor-6-keto prostaglandin F$_{1\alpha}$, a major urinary metabolite of prostacyclin, and the formation of thromboxane B$_2$, a stable metabolite of thromboxane A$_2$, by platelets stimulated by adenosine diphosphate, were studied in alcoholics, who had been admitted for detoxification. Once prolonged heavy drinking had stopped, platelet count and thromboxane formation, calculated either per 107 platelets or per litre of blood, significantly increased (p < 0.05), while the skin bleeding time and urinary excretion of the metabolite of prostacyclin decreased (p < 0.05). The balance between prostacyclin and thromboxane therefore seemed to favour the excretion of prostacyclin while it shifted to favour thromboxane formation about a week later.

The eicosanoids thromboxane A$_2$ (TXA$_2$) and prostacyclin (PGI$_2$) represent the opposite poles of an intravascular homeostatic mechanism for platelet aggregation.

We found previously that the formation of platelet generated TXA$_2$, measured from plasma as its hydrolysis product thromboxane B$_2$ (TXB$_2$), was enhanced shortly after ethanol withdrawal in alcoholics. Little is known about the changes in the prostacyclin system during this period.

The aim of this study was to extend the observations on platelet reactivity and haemostasis in alcoholics during ethanol withdrawal and to include the prostacyclin system. By measuring platelet capacity to generate TXB$_2$, as well as body synthesis of PGI$_2$—reflected by urinary 2,3-dinor-6-keto prostaglandin F$_{1\alpha}$ (2,3-dinor-6-keto PGF$_{1\alpha}$), the major PGI$_2$ metabolite—we hoped to obtain an indication of the balance between the proaggregatory TXA$_2$ and antiaggregatory PGI$_2$.

Material and methods

Eleven normotensive male alcoholics, aged 28 to 50 years (mean 41 years) were studied. All had been admitted to our inpatient detoxification programme. Informed consent was obtained from each.

The men had abused alcohol for 11 to 24 years (mean 16 years). The last binge before admission to the clinic had lasted from 14 to 90 days (mean 42 days). The mean alcohol consumption (hard liquor) had averaged 4.3 (range 1.7–7.2) g/kg of body weight per day. The patients denied drinking additives and taking any drugs during the week preceding enrolment in the study and none had salicylates in their urine the day before blood and urine sampling.

All the alcoholics were smokers, consuming at least 20 cigarettes per day. No changes were made in their smoking habits during detoxification. They were fed a normal hospital diet and received decreasing doses of oxazepam (120, 80, 60, 40 and 20 mg) during the first five days of detoxification. Previous control experiments have shown that this treatment does not influence platelet function.

Sampling of blood and urine

Blood and 24 hour urine samples were collected at one, seven, and 21 days after admission. The urine samples were frozen and stored at −70°C before the analysis of 2,3-dinor-6-keto PGF$_{1\alpha}$ (PGI$_2$—M).

Blood samples were taken after an overnight fast, with minimal stasis, from an antecubital vein into siliconised tubes, each containing one tenth of 3.8% sodium citrate. The amount of anticoagulant was adjusted according to packed cell volume to be the same in each tube. Platelet rich plasma (PRP) and platelet poor plasma were prepared as previously.
DETERMINATION OF URINARY EXCRETION OF 2,3-DINOR-6-KETO PGF1α

The amount of PGF1α-M was determined as described previously. Briefly, an aliquot from each 24 hour urine sample was purified on Sep Pak (Waters Associates, USA) reverse phase cartridges. The metabolite was eluted with methylene chloride/methyl formate (9/1). After partitioning between borate buffer (pH 8) and diethyl ether PGF1α-M was converted to the methoxime benzylester, Tris (trimethylsilyl) ether. Using a deuterium-labelled analogue of PGF1α-M as an internal standard, the amount of PGF1α-M was determined with the aid of a gas chromatograph mass spectrometer, equipped for negative chemical ionisation (Finnigan 4500, USA). Methoxyamine hydrochloride and N,O-bis (trimethylsilyl) trifluoroacetamide were supplied by Pierce, USA, and pentafluoro-benzyl-bromide by Fluka, Switzerland. Diisopropyl-ethylamine and all solvents were purchased from Merck, West Germany. PGF1α-M and its tetradeuterated analogue were gifts from Dr Alan Brash, Vanderbilt University, Tennessee, USA.

Creatinine in urine was determined by standard photometric techniques, and the urinary excretion of PGF1α-M was related to 1 g of excreted creatinine.

PLATELET STIMULATION

For platelet stimulation in PRP, 8 μM adenosine diphosphate (Boehringer Mannheim, West Germany) was used. The stimulation was allowed to proceed with continuous magnetic stirring for five minutes at 37°C on a Platelet Aggregation Profiler, model 3 (Biodata Corporation, USA). Thereafter, 1 M hydrochloric acid (final concentration 0-1 M) was added and the samples were immediately frozen and stored at -70°C.

DETERMINATION OF TXB2

Platelet-generated TXB2 was measured from plasma by double antibody radioimmunoassay technique. Earlier control experiments have shown that TXB2 is stable in acidified plasma samples for more than six months. TXB2 was bought from Amersham International (Amersham, UK) and the TXB2 antiserum from Institut Pasteur, Marnes-la-Coquette, France.

STATISTICAL METHODS

Student’s t test for paired observations was used for statistical analysis. The correlation coefficients between eicosanoid production and the age of the patients were also calculated.

Results

After stopping drinking almost all the alcoholics had reduced platelet counts (figure). During the first week of detoxification the platelet count increased significantly. None of the subjects, however, developed thrombocytosis. On admission to the study bleeding times were slightly prolonged compared with the normal values in our hospital, but one week later they shortened considerably.

The figure shows the formation of TXB2, calculated per 10⁷ platelets. One of the alcoholics gradually decreased his alcohol consumption over a period of five days before admission, and his platelets had developed an increased capacity to produce thromboxane. Therefore, although the mean TXB2 concentration of the alcoholics was low on admission to the clinic, it was somewhat higher than in our earlier reports.

The product of the platelet count in the whole blood and platelet TXB2 formation per 10⁷ platelets provided an indication of the capacity of a unit (one litre) of circulating blood to produce TXB2 (figure). On the day after admission the capacity to form TXB2 per litre of blood was normal. One week later the capacity of platelets to form TXB2 was increased. More

![Figure](http://jcp.bmj.com/)

Changes in haemostatic variables after ethanol withdrawal in alcoholics. Each point represents mean (SEM) of 11 subjects. Asterisks indicate significance of changes from 0 weeks using Student's t test for paired observations: *p < 0.05, **p < 0.01.
than four-fold the amount of TXB₂ was produced when calculated per 10⁷ platelets. A 10-fold mean increase could be observed when platelet TXB₂ formation was expressed per litre of whole blood.

The urinary excretion of PGI₂—M was raised on admission. After the first week of detoxification it had decreased significantly (p < 0.05). After three weeks of abstinence platelet count, urinary excretion of PGI₂—M, and the skin bleeding time had returned to normal and remained constant. Moreover, TXB₂ formation, calculated per 10⁷ platelets or per litre of blood, had decreased. By this time all the variables had reached the values we previously observed in healthy non-alcoholic male volunteers after an overnight fast.¹¹

To test the possibility that older subjects might have different eicosanoid formation than younger ones the data were separately analysed with regard to age. No significant correlations were found between the age of the patients and the number of eicosanoids produced.

Discussion

The balance between the two principal metabolites of arachidonic acid, proaggregatory and vasococontractory TXA₂, and antiaggregatory and vasodilatory PGI₂ seems to be important for primary haemostasis in vivo.³ ¹²

The measurement of the inactive metabolite TXB₂ in plasma, after stimulation of platelets in PRP, is a reflection of platelet capacity to synthesise TXA₂.¹ ¹⁰ Furthermore, the stimulated TXB₂ formation, calculated per litre of blood, should be a measure of the TXA₂ synthesis potential in the circulating blood.

The concentrations of PGI₂ or its metabolites in plasma are very low.¹³ Urine is the major route of excretion of prostacyclin metabolites in man. The major metabolite is 2,3-dinor-6-keto PGF₁α, which, however, accounts for less than 10% of the PGI₂ metabolised in the body.¹⁴ Nevertheless, the excretion of PGI₂—M in relation to urinary creatinine is a useful measure of individual changes in the total body synthesis of PGI₂.¹⁵

During the alcohol withdrawal period, we found a large increase in TXB₂ production in platelets stimulated by adenosine diphosphate ex vivo. The effect was particularly obvious when expressed as TXB₂ produced per litre of whole blood. These findings agreed with our earlier observations in alcoholics, showing that platelets stimulated by adenosine diphosphate develop enhanced capacity to form TXB₂ one to two weeks after drinking has stopped.⁴—⁶

The results of the present study suggest that changes may occur even in the endogenous synthesis of PGI₂. The excretion of PGI₂—M was raised one day after stopping drinking, but in contrast to the production of platelet TXB₂, it decreased with abstinence.

It is possible to speculate why these changes in the thromboxane-prostacyclin system occur during alcohol withdrawal. It is well known that the platelet count is depressed after a period of prolonged drinking, and this has been attributed to the toxic effects of ethanol on platelets and bone marrow.¹⁶ Moreover, changes in dietary habits, together with intestinal malabsorption and disturbances in the utilisation of nutrients,¹⁷ may contribute to the impaired activity of megakaryocytes.

The diminished capacity of platelets to form TXB₂ could also be a consequence of the decreased availability or synthesis of arachidonic acid that has been described in experimental animals and humans.¹⁸ Furthermore, the ethanol-induced production of lipid peroxides nineteen and possible stimulation of cyclooxygenase by these compounds, twenty as well as the availability of the inhibitors of lipid peroxidation, might have influenced the ability of platelets to produce thromboxane after a period of heavy drinking. According to our observations, lipid peroxides, measured as malondialdehyde, might be increased in plasma (unpublished observations), whereas the concentrations of vitamin E, an important free radical scavenger and inhibitor of lipid peroxidation in the membrane, twenty-one were found to be normal in alcoholics after heavy drinking had stopped.²²

After stopping drinking an increased platelet count often occurs.²³ A consistent finding in the previous studies four—the new platelets were hyper-reactive to adenosine diphosphate stimulation and form more TXB₂ than the normal population of platelets, a finding which was also confirmed by the results of this study.

The extent of the effect of ethanol ingestion on PGI₂ synthesis is still unknown. According to our own study ingestion of 0.25 g/kg body weight of ethanol did not change the urinary excretion of PGI₂—M, suggesting that the synthesis of prostacyclin under these conditions was not affected.¹¹ Other investigators, however, found an increase of some prostacyclin metabolites in plasma by radioimmunoassay shortly after ingestion of 32 g of ethanol.²⁴ Higher doses of ethanol might have completely different effects, as at least in vitro ethanol seems to stimulate the formation of PGI₂ in a concentration dependent way.

The raised concentrations of urinary PGI₂—M seen after a period of prolonged heavy drinking could also result from enhanced adrenergic tone twenty-six associated with ethanol withdrawal. Our patients clearly showed increased heart rate and blood pressure (data not shown) at the beginning of detoxification.

Whatever the reason, we have firm evidence to sup-
Ethanol withdrawal and TXA₂-PGI₂ balance

Support an increase in the formation of antiaggregatory PGI₂ with concomitant diminished overall capacity of platelets to form TXB₂. The prostacyclin-thromboxane balance thus favours PG₂ which is consistent with the increased bleeding time.

After one week of withdrawal there was an increase in the capacity of platelets to form TXB₂, while the body formation of PGI₂, as observed by urinary PGI₁—M, decreased. The prostacyclin-thromboxane balance was then shifted to thromboxane, and a decrease in bleeding time occurred. The changes in the balance of these eicosanoids observed in this study could therefore be associated with the regulation of platelet activity.

There is epidemiological evidence from different parts of the world to suggest that alcoholism is a risk factor for several types of thromboembolic and haemorrhagic disease. As the prostacyclin-thromboxane balance might be important in maintaining the integrity and patency of the vascular space the disturbances in this balance during ethanol withdrawal period could be one of the predisposing mechanisms for thromboembolic vascular disease and haemorrhagic complications.

In conclusion, the results of our study indicate that in alcoholics the balance between prostacyclin and thromboxane favours prostacyclin immediately after heavy drinking is stopped but that shortly thereafter the balance favours thromboxane. These changes are of importance for primary haemostasis and could contribute to the aetiology of vascular complications seen in alcoholics.

This study was supported by the Swedish Medical Research Council (06880). We thank Mrs Kaija Nopolta, Mr Christian Löwe, and Mr Helmut Sippel for technical assistance during this study.

References

13 Blair IA, Barrow SE, Waddell KA, Lewis JP, Dollery CT. Prostaglandin is not a circulating hormone in man. Prostaglandins 1982; 4: 570–89.

Requests for reprints to: Dr J Neiman, Department of Clinical Alcohol and Drug Research, Karolinska Institute, Karolinska Hospital, S-104 01 Stockholm, Sweden.
Urinary excretion of 2,3-dinor-6-keto prostaglandin F1 alpha and platelet thromboxane formation during ethanol withdrawal in alcoholics.

J Neiman, M Hillbom, G Benthin and E E Anggård

doi: 10.1136/jcp.40.5.512

Updated information and services can be found at:
http://jcp.bmj.com/content/40/5/512

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/