problem, although unsensitised latex is not provided in the kit. Positive latex results should be confirmed in the dye test and current CMV infection excluded in those patients whose serum samples give false positive results in the latex agglutination test. This is important as clinical manifestations of both CMV and toxoplasmosis have many similar features.

Further work to identify the antigens recognised by sera giving false positive reactions is in hand, using the Western blot technique.

AH BALFOUR ES PRESTAGE INOEL
Regional Public Laboratory, Bridle Path, York Road, Leeds LS15 7TR.

TG WREGHITT* *Clinical Microbiology and Public Health Laboratory, Addenbrooke's Hospital, Cambridge CB2 2QW.

References

Limited value of AgNOR enumeration in assessment of thyroid neoplasms

Argyrophilic nucleolar organising region-associated proteins (AgNORs) have recently been shown to be of interest in a variety of different organs and disease states, including lymphomas, melanocytic lesions of the skin, and pleural mesothelioma. In these and other cases the enumeration of nucleolar structures has been shown to be of diagnostic value in differentiating benign from malignant disease, or in distinguishing between low and high grade malignancy. Accordingly, a study of AgNORs in thyroid tissue was undertaken to see if the technique could distinguish between benign and malignant lesions, particularly follicular neoplasms.

Thirty three specimens were examined and these included anaplastic carcinoma (n = 4), follicular carcinoma (n = 4), papillary carcinoma (n = 6), follicular adenoma (n = 6), and nodular colloid goitre (n = 13). The usual one step silver colloid reaction\(^1\) was run at room temperature for 35 minutes. Intranuclear dots of silver deposit were counted in 100 cells. Counting was difficult in papillary carcinomas because there were clear nuclei with often only one large intranuclear deposit, presumably corresponding to the nucleolus. There was, however, consistency in all categories within cases.

The results are expressed in the figure.

Figure Scattergram showing mean number of AgNOR counts for each case in anaplastic, follicular, and papillary carcinoma and for adenoma and colloid goitre.

There was separation of AgNOR counts between anaplastic and both papillary and follicular carcinomas. The \(\chi^2\) test was used to assess significance between the pooled means of anaplastic carcinoma and both follicular and papillary carcinomas (\(p < 0.05\)). A similar difference was found between anaplastic carcinoma and adenoma (\(p < 0.05\)) and a more significant difference (\(p < 0.02\)) between follicular and papillary carcinoma and also papillary carcinoma and colloid goitre. There was also a considerable overlap between all carcinomas and colloid goitre. No other pairings showed a significant difference, particularly follicular adenoma and carcinoma. These findings are not as clear cut as in other studies, where a clear distinction was obtained between high and low grade lymphomas, benign and malignant melanocytic lesions, and reactive mesothelioma and mesotheliomas.

NORs are loops of ribosomal RNA and are therefore important in protein synthesis.\(^4\) It may be that follicular cells are in variable stages of proliferation or protein synthetic activity in both benign and malignant conditions. Certainly in the study of other endocrine tissues such as breast and prostate by means of the AgNOR method, discrimination between benign and malignant tissue has been relatively disappointing.\(^5\) This may be, in part, the result of rRNA gene amplification in stimulated non-malignant endocrine cells, leading to increased gene copies and hence higher NOR numbers than in “resting” cells.\(^3\) AgNORs have therefore shown little value in differentiating between benign and malignant follicular neoplasms in view of the “overlap” in numbers between these groups.

ER NAIRN J CROCKER JULIE MCGOVERN
Department of Histopathology, East Birmingham Hospital, Bordesley Green East, Birmingham B9 3ST.

References

Letters to the Editor

Coulter Plus IV leucocyte volume analysis instrument: sensitivity of blast identification in peripheral blood

Previous reports evaluating the clinical usefulness of the three population differential have examined various diseases. We studied the sensitivity of the Coulter automated differential in identifying blast cells in peripheral blood samples.
Letters to the Editor

Material and methods

The Coulter Electronics S Plus IV D automated white cell differential is based on the size of cell residues after partial lysis of white cell cytoplasm. The instrument classifies white cells into three populations—lymphocytes, mononuclears, and granulocytes. A histogram of leucocyte volume distribution is produced which incorporates a series of visual alarms. These alarms correspond to the separation valleys between the three cell populations. They are activated when there is an overlap between populations, indicating unclassified cells.

Eighty seven venous edetic acid blood samples containing blasts were processed between 30 minutes and four hours after collection. The samples were derived from 51 treated and untreated patients with a variety of malignant blood disorders (table). Sensitivity of blast detection was assessed by comparing the automated differential with 100 cell microscopic differential counts in blood films stained by Wright's stain.

<table>
<thead>
<tr>
<th>Type of disease</th>
<th>No of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute myeloblastic leukaemia</td>
<td>26</td>
</tr>
<tr>
<td>Acute lymphoblastic leukaemia</td>
<td>9</td>
</tr>
<tr>
<td>Chronic myeloid leukaemia</td>
<td>2</td>
</tr>
<tr>
<td>in transformation</td>
<td></td>
</tr>
<tr>
<td>Chronic myelomonocytic leukaemia</td>
<td>2</td>
</tr>
<tr>
<td>Other myelodysplastic disorders</td>
<td>8</td>
</tr>
<tr>
<td>Myelofibrosis</td>
<td>4</td>
</tr>
</tbody>
</table>

Table. Haematological disorders included in study

Results

Alarms indicating the presence of abnormal leucocytes occurred in 76 of the 87 samples (87%). The total white cell counts of patients showing flagged blasts ranged from 1·0-95·7 × 10^9/L, and those of unflagged blasts from 1·0-13·3 × 10^9/L. The percentage of blasts ranged from two to 94. Blasts were detected in all nine new untreated patients.

An analysis of 11 samples with blasts noted at microscopic examination and not generating blast associated alarms showed that in three of the samples the alarm associated with nucleated red cells was generated. This was confirmed by microscopic examination. The remaining eight unflagged samples were derived from patients receiving treatment. During treatment blasts may become reduced in size and therefore be included in the lymphocyte count. Such blasts will not produce an alarm and will not be detected. Twelve per cent of the patients had non-flagged blasts while receiving treatment. The sensitivity of regional alarms in identifying blasts was 87%. Blasts could be identified in all samples processed, either by the instrument’s alarm system or by scrutiny of the blood count results and attention to proffered clinical details, including chemotherapy, resulting in microscopic review.

Discussion

The Coulter S Plus IV D automated differential does not specifically recognise blast cells and blasts may not be identified based on regional alarm criteria alone. The automated differential does not correlate with the microscopic differential when blasts are recognised. Our study indicates that the Coulter leucocyte volume analysis instrument has acceptable limits of operation for the detection of blasts. A microscopic examination of the blood film should be undertaken, however, when there are abnormal findings in the three part differential, in patients with blood disease receiving chemotherapy or when clinical diagnoses indicate a blood film examination is required. High detection rates for early and rapid diagnosis of malignant blood disorders must call into question the utility of further refined instruments with their attendant high capital cost.

BC Allen
Leicester Royal Infirmary,
Leicester LE1 8WW.

References

A tickle at the back of the throat

We report a case of a 15 year old boy who presented with a short history of nasal obstruction. He complained of frequent frontal headaches and had had several episodes of a sore throat in the past year. On clinical examination both tonsils appeared pitted and unhealthy with the left tonsil being larger than the right. A tonsillectomy was performed without complication and both tonsils were submitted for histological examination.

Both tonsils showed reactive hyperplasia with large active germinal centres. Intraepithelial lymphocytes and neutrophils were present within the crypts. The features were therefore those of active chronic inflammation. In the left tonsil a hair and surrounding hair follicle was also present (figure).
Coulter Plus IV leukocyte volume analysis instrument: sensitivity of blast identification in peripheral blood.

B C Allen

J Clin Pathol 1988 41: 1136-1137
doi: 10.1136/jcp.41.10.1136-b

Updated information and services can be found at:
http://jcp.bmj.com/content/41/10/1136.2.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/