Immunoglobulin gene rearrangement and antigenic profile confirm B cell origin of primary cerebral lymphoma and indicate a mature phenotype

W J SMITH,* J A GARSON,† S P BOURNE,‡ J T KEMSHEAD,† H B COAKHAM‡
From the *Department of Histopathology, University College Medical School, †CRF Oncology Laboratory, Institute of Child Health, London, and the ‡Department of Neurosurgery, Frenchay Hospital, Bristol

SUMMARY Six cases of primary cerebral lymphoma were immunophenotyped and analysed by Southern blotting to determine the clonality and lineage of these neoplasms. Molecular analysis showed that they were of B cell origin, and the rearrangement of both heavy and light chain immunoglobulins in malignant cells showed that they were monoclonal populations of mature B cells.

The characterisation of the genetic configuration of the immunoglobulin genes in these lymphomas is important because the ability to distinguish between primary lymphoma of the central nervous system and other malignant cerebral tumours has important implications for treatment and survival.

Primary cerebral lymphoma is relatively rare, comprising between 0·3 and 1·5% of all intracranial tumours.¹ Until recently, several diagnostic labels were applied to this tumour, including reticulum cell sarcoma and microglioma. The precise cell of origin of primary cerebral lymphoma is a subject of controversy, although an association between these neoplasms and non-Hodgkin's lymphoma has been acknowledged.² The ability to distinguish between primary lymphoma of the central nervous system (CNS) and other malignant cerebral tumours has clinical consequences, as many cerebral lymphomas are radiosensitive.³ The use of monoclonal antibodies has facilitated such differential diagnosis in certain cases.⁴ An immunohistochemical study of 20 cerebral lymphomas showed binding by the monoclonal antibody B1, which recognises the antigen CD20, indicating that they were B cell malignancies.⁴ The presence of reactive T cells in cerebral lymphomas, however, may lead to difficulty in diagnosis if the immunohistochemical data are not clear.

The use of molecular techniques to determine the lineage and clonality of lymphoproliferative conditions has become more widespread in the past few years due to the availability of recombinant DNA probes encoding the immunoglobulin and T cell receptor genes.⁵ These genes are organised in the genome in a segmental fashion and undergo somatic rearrangement during commitment to the B or T cell lineage.⁶ Each lymphocyte undergoes a specific rearrangement of its immunoglobulin or T cell receptor genes, which is unique to the cell. Consequently, if a particular cell undergoes a clonal expansion, the whole clone can be identified by its genetic configuration using the Southern blot technique. The ability to distinguish between monoclonal and reactive proliferations of lymphocytes is of considerable benefit in the diagnosis of lymphoma.

We analysed six cases of primary cerebral lymphomas by immunophenotyping and by Southern blot analysis to determine the clonality and lineage of these neoplasms.

Material and methods

Cases were diagnosed as primary cerebral lymphoma on the basis of histological and immunohistochemical studies. DNA was extracted from snap frozen biopsy specimens, in which the presence of lymphoma had been confirmed by standard methods.⁷ After incubation with a restriction enzyme (EcoR1, HindIII, or BglIII), the restriction fragments were separated according to size by gel electrophoresis and transferred to a nylon membrane (Gene-Screen Plus, DuPont) by Southern blotting.⁸ Recombinant DNA probes (table 1)⁹-¹¹ were radiolabelled with ³²P-dCTP by oligo labelling¹² and hybridised to the filter. After stringent washing the filter was exposed to pre-fogged x-ray film at −70°C for between two and four days.

The immunohistochemical studies were carried out
Confirmation of B cell origin of primary cerebral lymphoma

Table 1 **Recombinant DNA probes**

<table>
<thead>
<tr>
<th>Probe</th>
<th>Code name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy chain, joining region (Jh)</td>
<td>C76R51A</td>
<td>7</td>
</tr>
<tr>
<td>κ light chain, constant region (Ck)</td>
<td>pUCR17</td>
<td>9</td>
</tr>
<tr>
<td>λ light chain, constant region (Cλ)</td>
<td>pUC15</td>
<td>10</td>
</tr>
<tr>
<td>T cell receptor β chain (Cβ)</td>
<td>Cβ2</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 2 **Monoclonal antibodies**

<table>
<thead>
<tr>
<th>Monoclonal antibody</th>
<th>Tissue specificity</th>
<th>Source/Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D1</td>
<td>Pan-leukocyte and lymphoma</td>
<td>Dr P Beverley13</td>
</tr>
<tr>
<td>B1</td>
<td>Pan-B cell (CD20)</td>
<td>Coulter Clone15</td>
</tr>
<tr>
<td>FMC7</td>
<td>Mature B cell</td>
<td>Sera Lab16</td>
</tr>
<tr>
<td>UCHT1</td>
<td>Pan-T cell (CD3)</td>
<td>Dr P Beverley17</td>
</tr>
<tr>
<td>Leu 2a</td>
<td>Suppressor/cytotoxic T cells (CD8)</td>
<td>Becton Dickinson18</td>
</tr>
<tr>
<td>Leu 3a</td>
<td>Helper/inducer T cells (CD4)</td>
<td>Becton Dickinson19</td>
</tr>
<tr>
<td>Leu 7</td>
<td>Natural killer cells and large granular lymphocytes</td>
<td>Becton Dickinson19</td>
</tr>
<tr>
<td>UJ13A</td>
<td>Pan-neuroectodermal</td>
<td>Dr JT Kemshead20</td>
</tr>
</tbody>
</table>

on frozen and fixed tissues using the antibodies detailed in table 2.13-20 Frozen sections (6 μm) were hydrated for five minutes in phosphate buffered saline (PBS) on gelatine coated slides. After removing excess PBS 100 μl of diluted monoclonal antibody was applied and incubated for 30 minutes at room temperature. Non-immune ascitic fluid was used as a negative control. Two washes in PBS were followed by a 30 minute incubation with 100 μl of fluorescein conjugated, affinity purified, goat anti-mouse immunoglobulin. Unbound conjugate was removed by two washes in PBS and the sections were mounted in 90% glycerol/10% PBS for examination by epifluorescence microscopy. Haematoxylin and eosin staining was performed on subsequent sections to facilitate the orientation and interpretation of the fluorescence results.

Formalin fixed paraffin embedded tissue sections were dewaxed and endogenous peroxidase activity inhibited by immersion in 0.5% hydrogen peroxidase in methanol for 30 minutes. The protocol outlined for frozen sections was followed, except that the fluorescein conjugate was replaced by peroxidase conjugated goat antimouse immunoglobulin. The bound antibody was visualised by incubation with diaminobenzidine. Sections were counterstained with Harris's haematoxylin, dehydrated through an alcohol series, and mounted.

Results

Immunostaining of all the biopsy sections from this series of cerebral malignancies with the pan-leucocyte antibody 2D1 and the pan-B cell reagent B1 confirmed that they were B cell populations (table 3). Membrane rather than cytoplasmic binding was observed. In all the samples tested with FMC7 20-70% of the cells expressed the antigen recognised by this antibody. A sparse population of cells (5%) bound the anti-T cell antibodies. None of the cells was immunoreactive with the monoclonal antibodies that recognise antigens expressed by natural killer cells (Leu7) or neuro-ectodermal tissue (UJ13A).

The molecular analysis of the six primary cerebral lymphomas (table 4) confirmed the immunohistochemical data which showed that they were B cell populations (table 4). The demonstration of a population of cells all possessing the same rearrangement of the Jh locus indicates the presence of a monoclonal B cell population. The novel restriction fragments were not generated by DNA polymorphisms as they were detected in all three restriction digests analysed for each case. The germline fragments which hybridised to the Jh probe originated from the normal cells in the biopsy specimen or, in case B7, the non-rearranged Jh allele in the neoplastic clone. In all cases, with the exception of B7, both alleles of the immunoglobulin heavy chain gene had undergone somatic recombination. The intensities of the non-germline bands on the autoradiographs indicated that the neoplastic clones comprised a high proportion of the cell populations examined.

Immunohistochemical study of these cases did not include an analysis of the immunoglobulin light chains

<table>
<thead>
<tr>
<th>Case</th>
<th>2D1</th>
<th>LC</th>
<th>B1</th>
<th>FMC7</th>
<th>UCHT1</th>
<th>Leu2A</th>
<th>Leu3a</th>
<th>Leu7</th>
<th>UJ13A</th>
</tr>
</thead>
<tbody>
<tr>
<td>B5</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>NT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B6</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B7</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B8</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B9</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>NT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>NT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

+ = positive; - = negative; NT = not tested; -* = scattered infiltrate of UCHT1 positive cells (<5%) present.
Figure Illustration of immunoglobulin heavy chain joining region (Jh) gene rearrangement and germline configuration of genes encoding T cell receptor β chain constant region (Cβ) in cases B6, B8, B9 and C1 of primary cerebral lymphoma. G = germline; R = rearranged; Kb = sizes of molecular weight markers in kilobases.

present on the cell surface. Rearrangement of the Ck genes was detected in four of the five cases in which it was possible to examine the configuration of the light chain genes (table 4). Clonal deletion of the Ck genes had probably occurred in case B8. The patterns of hybridisation to the Jh probe in this case indicated that about 80% of the cell population was monoclonal while the remaining 20% possessed germline immunoglobulin heavy chain genes. On probing with the Ck probe, the band representing the germline fragment was about 20% of the intensity which would have been observed if all the cells had possessed non-rearranged Ck genes. No other restriction fragments complementary to the Ck probe were observed. These data suggest that the malignant cells (80%) had undergone a clonal deletion of their Ck genes.

The Cλ locus is highly polymorphic, and comparing its configuration in normal and putative lymphoma samples from the same patient facilitates the identification of a rearrangement at this locus. Configurations of the Cλ loci similar to those of published germline patterns were detected in four of five samples (table 4). In case B8 a restriction fragment which hybridised to the Cλ probe was observed in addition to the germline fragments. Although no control tissue from this patient was available, the

Table 4 Genotypic results

<table>
<thead>
<tr>
<th>Case No</th>
<th>Jh EcoRI</th>
<th>HindIII</th>
<th>BglII</th>
<th>Ck EcoRI HindIII</th>
<th>Ck BglII HindIII</th>
<th>Cβ HindIII EcoRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>B5</td>
<td>G + R/R</td>
<td>G + R/R</td>
<td>ND</td>
<td>Insufficient DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B6</td>
<td>G + R/R</td>
<td>G</td>
</tr>
<tr>
<td>B7</td>
<td>ND</td>
<td>G + R/R</td>
<td>G + R/R</td>
<td>G + R/R</td>
<td>G + D</td>
<td>G + R</td>
</tr>
<tr>
<td>B8</td>
<td>G + R/R</td>
<td>G + R/R</td>
<td>G + R/R</td>
<td>G + R/R</td>
<td>G + R</td>
<td>G</td>
</tr>
<tr>
<td>B9</td>
<td>G + R/R</td>
<td>G + R/R</td>
<td>G + R/R</td>
<td>G + R/R</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>C1</td>
<td>G + R/R</td>
<td>G + R/R</td>
<td>G + R/R</td>
<td>R/R</td>
<td>G</td>
<td>G</td>
</tr>
</tbody>
</table>

G = germline genetic configuration; R = rearranged genetic configuration; D = deleted; ND = not done.
presence of this fragment in combination with the apparent clonal deletion of the Ck locus indicates a rearrangement at the C2 locus.

The state of the genes encoding the constant region of the β chain of the T cell receptor was examined in each case with two restriction enzymes EcoRI and HindIII. There was no evidence of genetic rearrangement at this locus in any sample (table 4).

Discussion

The combination of immunohistochemical and genetic studies on this series of primary cerebral lymphomas confirmed that they were B cell malignancies. The rearrangement of both the heavy and light chain immunoglobulin genes in these cells showed that they were monoclonal populations of mature B cells. Despite the presence of reactive T cells, recognised by anti-T cell antibodies, no evidence of a monoclonal T cell population was identified by molecular techniques. Although the Southern blotting technique is relatively time consuming, it is useful in cases in which the clonality or lineage of a lympho-proliferative population is not clarified by immunohistochemical techniques.

In our experience the immunohistochemical demonstration of surface immunoglobulin light chains in cerebral tissue is unsatisfactory. The presence of immunoglobulin released by necrotic tissue leads to non-specific reactivity of the anti-light chain antibodies. "Freeze and thaw" and "crush" artefacts adversely affect the interpretation of these immunohistochemical data. Immunoglobulin gene rearrangement occurs during development in a hierarchical manner: immunoglobulin heavy chain genes are rearranged before light chain genes. \(^\text{21}\) The hierarchy extends to light chain genes: κ chain gene rearrangement precedes that of λ. The demonstration of light chain gene rearrangement in the primary cerebral lymphomas indicates that they possess a relatively mature genotype. This agrees with the immunophenotypic data as the monoclonal antibody FMC7 recognises an antigen expressed by mature B cells. \(^\text{16}\)

Studies on non-Hodgkin's lymphoma biopsy specimens from various sites have shown that most lymphomas that were immunoreactive with the monoclonal antibody B1 possessed rearranged immunoglobulin genes. \(^\text{22}\) \(^\text{23}\) This was true even if the percentage of cells expressing the antigen was low. Molecular analysis has proved to be of particular value in the characterisation of "null" non-Hodgkin’s lymphomas, most of which possess rearranged immunoglobulin genes. \(^\text{24}\) \(^\text{25}\) The data presented in this paper on primary cerebral lymphomas correlate with those already published on non-Hodgkin’s lymphomas.

The clinical consequences of identifying cerebral lymphoma are illustrated by cases B6 and B9 (table 5). The original histological diagnoses could not differentiate between lymphoma and secondary carcinoma. Immunophenotyping and genetic analysis confirmed that lymphoma was present which proved to be radiosensitive in these cases. Similarly, genetic and immunological analysis of case B7 showed the presence of B cell lymphoma rather than an undifferentiated metastasis. The correct diagnosis of this case was made retrospectively (on frozen tissue) as part of an immunohistological review of undifferentiated tumours. The patient had not received radiotherapy and died two months after biopsy. This contrasts with the relatively longer survivals of those patients who had received radiotherapy (table 5).

The characterisation of the genetic configuration of the immunoglobulin genes in these lymphomas would be of benefit in the event of a patient developing a further tumour. If the new neoplasm possessed a genetic configuration identical with that of the original lymphoma, it would indicate the re-emergence of the original B cell clone.

In conclusion, we have shown that the primary cerebral tumours studied in this series by immun-
ological and genetic analysis were B cell malignancies, arrested at the mature end of the B cell differentiation pathway. These methods provide the neuropathologist with information which may have important clinical implications.

We thank Professor P G Isaacson, in whose department part of this study was undertaken, and Dr D B Brownwell for her diagnostic skills. WJS is supported by the Cancer Research Campaign, JAG and JTK by the Imperial Cancer Research Fund, and SPB by the Bristol Brain Research Foundation.

References

7 Flanagan JD, Rabbitts TH. The sequence of an immunoglobulin epsilon heavy chain constant region gene and evidence for three non-allelic genes. EMBO J 1982;1:655–60.

Requests for reprints to: Dr W J Smith, Department of Histopathology, School of Medicine, University College London, University Street, London WC1E 6JJ, England
Immunoglobulin gene rearrangement and antigenic profile confirm B cell origin of primary cerebral lymphoma and indicate a mature phenotype.

W J Smith, J A Garson, S P Bourne, J T Kemshead and H B Coakham

doi: 10.1136/jcp.41.2.128

Updated information and services can be found at:
http://jcp.bmj.com/content/41/2/128

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/