Normal haemoglobin electrophoretic pattern in a patient with sickle cell disease and end stage renal failure

Chronic renal failure is an important cause of morbidity and mortality in older patients with sickle cell disease, and its onset is often heralded by a progressive fall in steady state haemoglobin concentration. The renal failure is probably multifactorial, and recent work has suggested that an associated reduction in erythropoietin activity may play a particularly important part in the development of anaemia. It is also well recognised that regular blood transfusion in sickle cell disease in the absence of renal impairment suppresses endogenous erythropoiesis.

We report a patient with sickle cell anaemia who developed chronic renal failure and a regular requirement for blood transfusions. This combination of factors produced such a profound degree of bone marrow erythropoietic suppression that the presence of sickle haemoglobin could no longer be detected by routine electrophoretic procedures.

In 1975 a 27 year old woman from Montserrat travelled by air to London and shortly after arrival presented with limb and back pains. Examination showed that she had anaemia, jaundice, heart failure with a blood pressure of 170/100 mm Hg and bilateral chronic leg ulceration. Haematological investigation showed haemoglobin to be 6-0 g/dl, white cells 11.6 × 10^9/l (differential count normal), platelet count 375 × 10^9/l, and a reticulocytosis of 34%. Hb SS disease was diagnosed by a positive sickle solubility test and the presence of a major band in the position of Hb S with a faint band in the position of Hb F on haemoglobin electrophoresis (cellulose acetate, pH 8.6, and agar gel, pH 6.8). Hb F value was 5.5% of the total haemoglobin. Serum urea and creatinine concentrations were normal.

Eight years later mild renal impairment had become apparent which over the next two years progressed to chronic renal failure associated with anaemia requiring regular blood transfusion. Investigation now showed a serum urea concentration of 65.4 mmol/l, creatinine concentration of 1003 μmol/l, and creatinine clearance 2 ml/minute. Urinary protein output was 1.8 g/24 hour; she was abacterueric and a renal ultrasound scan was normal. A renal biopsy specimen showed glomerulosclerosis, severe tubular atrophy, diffuse interstitial fibrosis, and increased amounts of haemosiderin in tubular epithelial cells. The biopsy specimen showed no evidence of amyloid or hypertensive change. There was no evidence of immunologically mediated disease on electron microscopical examination or immunofluorescence. Her renal failure was successfully managed by continuous ambulatory peritoneal dialysis (CAPD).

Haematological investigation seven weeks after blood transfusion now showed a haemoglobin concentration of 5.7 g/dl, a reticulocyte count of <2%, with normal white cell and platelet counts. A sickle solubility test was negative and haemoglobin electrophoresis on cellulose acetate and agar gel showed only Hb A. Analysis of the absorbance of haemoglobin eluted from CM cellulose chromatography showed α and β^a peaks but no β^b peak (figure). Examination of the rate of incorporation of ^3H-leucine into the globin of reticulocytes from the patient with fractionation of the globin chains by CM cellulose chromatography, however, showed incorporation into only α and β^b fractions, consistent with synthesis of only Hb S (figure). The α/β globin biosynthesis ratio was normal at 0.997. Analysis of peripheral blood DNA using the restriction enzyme MST II showed only the 1.3 Kb gene fragment, thus confirming the presence of homozygous sickle cell disease (Hb SS). Ferrokinetic studies showed a normal ^59Fe plasma clearance T1/2 of 94 minutes (normal range 60–140) with a plasma iron concentration of 32 μmol/l (normal range 14–29). Red cell utilisation was greatly reduced at 2% on day 6 (normal maximum utilisation is 70–80% by day 10–14). A bone marrow aspirate showed severely reduced erythropoietic activity with greatly increased reticuloendothelial iron but absent erythron iron. Serum assay for human parvovirus Ig M antibody showed no rise, thus making recent infection unlikely to be the cause for the aplasia.

In view of our findings a negative sickle solubility test with a normal haemoglobin electrophoretic pattern may need to be anticipated in patients with homozygous sickle cell disease, end stage renal failure, and a transfusion requirement.

References

Four hour rapid urease test (RUT) for detecting Campylobacter pylori: is it reliable enough to start treatment?

Detection of Campylobacter pylori in antral or duodenal biopsy specimens usually entails histological or microbiological methods that may not produce a result for several days. Langenberg et al described the unusual characteristic of rapid urea hydrolysis by Campylobacter pylori that indicated the presence of pre-formed urease. McNulty and Wise reported a rapid urease test (RUT) capable of detecting the presence of Campylobacter pylori on the same day as endoscopy. An evaluation of the commercially available CLO-Test has also recently been reported. More recently, however, Das et al cast doubt on the reliability of this test by reporting specificity at 86% and sensitivity at only 59%. In a small series we previously described that the specificity and sensitivity of RUT was 100% and 81%, respectively.

We now report our results on a modifica-
tion of the four hour RUT for the detection of Campylobacter pylori. Two hundred and fifty six mucosal biopsy specimens were taken from the gastric antrum and duodenum for a four hour RUT, histological examination, and culture. Histology specimens were stained with Giemsa stain and examined for Campylobacter pylori. Specimens for culture were placed in 0.5 ml of 20% glucose, homogenised, and a drop taken for immediate Gram staining and the remainder placed on blood agar and campylobacter medium with skimrow supplement. Plates were incubated in a microaerophilic environment at 37°C for six days. Campylobacter pylori colonies were examined for the presence of oxidase and urease and confirmation was obtained by Gram stain of the culture. One biopsy specimen (about 0.02 mg) was homogenised in 0.9% saline 0.5 ml, inoculated into 2% urea broth, incubated at 37°C, and examined after four hours. There was an excellent correlation between this modified four hour RUT, histological results, and culture. The table gives results of all biopsy specimens showing four hour RUT specificity at 100% and sensitivity at 89%. Specificity and sensitivity for antral biopsy specimens was 100% and 97% respectively.

False negative results for four hour RUT may be due to low numbers of bacteria within the specimen. We serially diluted Campylobacter pylori and inoculated dilutions into RUT broth which was incubated at 37°C and 50°C. We observed that the RUT test became positive within one hour at bacterial concentrations of >10^2 colony forming units/ml (cfu/ml) when incubated at 37°C and of >10^3 cfu/ml at 50°C. All biopsy specimens in which Campylobacter pylori could be detected showed evidence of acute gastritis or duodenitis.

These results indicated that the specificity of our test was higher than the CLO-Test (100% v 97%) and that a positive four hour RUT is sufficient evidence to start treatment if appropriate. Preliminary results suggest that incubation at a higher temperature (50°C) may further enhance the sensitivity of the four hour RUT.

D Vaira, M Holtson

Results of antral and duodenal biopsy specimens

<table>
<thead>
<tr>
<th></th>
<th>Histology</th>
<th>Culture</th>
<th>Four hour RUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>91</td>
<td>63</td>
<td>81</td>
</tr>
<tr>
<td>Negative</td>
<td>165</td>
<td>191</td>
<td>175</td>
</tr>
<tr>
<td>Total</td>
<td>256</td>
<td>254</td>
<td>256</td>
</tr>
</tbody>
</table>

Des-gamma-carboxyprothrombin and hepatoblastoma

Increased serum a-fetoprotein is used as a diagnostic marker of hepatoblastoma in children, but in some cases, the serum a-fetoprotein is normal.1 We wanted to know if the des-gamma-carboxyprothrombin concentration (DCP), a newly described marker of hepatocellular carcinoma in adults,2 could be used in the diagnosis of hepatoblastoma.

Raised plasma concentrations of DCP, the des-gamma-carboxylated form of prothrombin (factor II), are seen in vitamin K deficiency, in patients taking oral anticoagulants, and in most patients with hepatocellular carcinomas.3 We assayed DCP value by a previously described method4 using staphylocoagulase (upper limit of normal, 15 mU/ml) in three children with histologically confirmed hepatoblastoma. None had received treatment. DCP, a-fetoprotein, and vitamin K concentrations are shown in the table. The prothrombin time and serum vitamin K concentrations (normal range 0.2-0.8 ug/l) were normal in all three children.

The increased plasma DCP concentration in these three patients was not due to vitamin K deficiency, and presumably results from the same (unknown) mechanism, observed in adult hepatocellular carcinoma. We found normal DCP values in other liver diseases of children usually associated with an increased a-fetoprotein concentration: hereditary tyrosinemia (n = 2), giant cell hepatitis (n = 4), fulminant hepatitis (n = 1), and neonatal hepatic necrosis with hepatic regeneration (n = 2).

Other studies are required to determine the respective value of DCP and a-fetoprotein assays as markers of hepatoblastoma in diagnosis and treatment, but we suggest that this marker may be useful in rare cases of hepatoblastomas with normal serum a-fetoprotein. It should be noted that in adults with hepatic carcinoma, there is a weak correlation between increased DCP and increased a-fetoprotein, the two markers thus being to some extent complimentary.

J Lefere, D Armentaud, M Leclercq, M Guillaumeont, Danielle Gozin, D Alagille

*Institut National de transfusion sanguine, 6, rue Alexandre Cabanel, 75015 Paris,
†Service d'hépatologie, hôpital de Kremlin-Bicêtre, ‡Institut Pasteur, Lyon, France

References

Table a-fetoprotein, DCP, and vitamin K concentrations in hepatoblastoma

<table>
<thead>
<tr>
<th></th>
<th>a-fetoprotein (U/ml)</th>
<th>DCP (mU/ml)</th>
<th>Vitamin K (ug/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 month old male infant</td>
<td>335 000</td>
<td>400</td>
<td>0.21</td>
</tr>
<tr>
<td>13 year old girl</td>
<td>600 000</td>
<td>70</td>
<td>0.30</td>
</tr>
<tr>
<td>6 year old girl</td>
<td>450 000</td>
<td>110</td>
<td>0.40</td>
</tr>
</tbody>
</table>
Four hour rapid urease test (RUT) for detecting Campylobacter pylori: is it reliable enough to start treatment?

D Vaira, J Holton, S Cairns, M Falzon and P Salmon

doi: 10.1136/jcp.41.3.355-b

Updated information and services can be found at:
http://jcp.bmj.com/content/41/3/355.2.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Errata

An erratum has been published regarding this article. Please see next page or:
/content/41/6/708.4.full.pdf

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/
This concise volume provides an authoritative account of these puzzling diseases which still present to the managing physician, whether internist, neurologist, paediatrician, or rheumatologist, a number of therapeutic challenges. The work comprises a series of chapters commencing with an introductory overview on clinical features and differential diagnosis by Sir John Walton. Further chapters are to be found on muscle biopsy techniques (open, needle, and conchoitome methods are well described), immunological aspects, juvenile dermatomyositis, adult polymyositis and dermatomyositis, viral myositis, bacterial myositis, parasitic and fungal infections, and miscellaneous conditions. The work is as up to date as can be expected (the most recent cited reference is 1986), and the standard of monochrome photographic illustrations of techniques, muscle biopsy material, histology, histochemistry, and electron microscopy are at a high standard. The few colour photographs illustrate particular clinical features and modern immunofluorescent histochemical techniques. The work is heavily biased (intentionally) on diagnosis and aetiology, and therefore it is perhaps to be expected that therapeutic considerations receive limited coverage.

For the price this volume will be of value to all interested in muscle diseases.

PP ANTHONY

The authors have successfully produced a pocket size handbook of practical procedures employed in dynamic function tests commonly used in general medicine.

The first two chapters relate to the provocative tests frequently used in endocrinological cases, while the third chapter is a compilation of tests used in gastric, renal, and oncological medicine. The section on adrenal cortex function is particularly well documented. Steroid hormone biochemistry is a specialty often shunned by clinicians and biochemists because of its reputedly complex and specialised nature. This book will enhance the interaction between the clinician and biochemist to ensure that the biochemical function test is expedited correctly and interpretation of the result is correct. This will ensure that their effort is not wasted, nor is the patient subjected to an unpleasant and perhaps unnecessary test.

The information is well presented and I am sure that it will not be long before most laboratories have this book on their shelves.

LA PERRY

This concise volume provides an authoritative account of these puzzling diseases which still present to the managing physician, whether internist, neurologist, paediatrician, or rheumatologist, a number of therapeutic challenges. The work comprises a series of chapters commencing with an introductory overview on clinical features and differential diagnosis by Sir John Walton. Further chapters are to be found on muscle biopsy techniques (open, needle, and conchoitome methods are well described), immunological aspects, juvenile dermatomyositis, adult polymyositis and dermatomyositis, viral myositis, bacterial myositis, parasitic and fungal infections, and miscellaneous conditions. The work is as up to date as can be expected (the most recent cited reference is 1986), and the standard of monochrome photographic illustrations of techniques, muscle biopsy material, histology, histochemistry, and electron microscopy are at a high standard. The few colour photographs illustrate particular clinical features and modern immunofluorescent histochemical techniques. The work is heavily biased (intentionally) on diagnosis and aetiology, and therefore it is perhaps to be expected that therapeutic considerations receive limited coverage.

For the price this volume will be of value to all interested in muscle diseases.

RHT EDWARDS