neutropenia was related to an initially undetected clone of cells capable of suppressing myelopoiesis, which overtly presented 34 months later as ALL. Neutropenia should be regarded as a cytopenia which may rarely precede the onset of ALL.

PCA SHEPHERD
GM CORBETT
NC ALLAN
Department of Clinical and Laboratory Haematology,
Western General Hospital,
Edinburgh, Scotland

References

Comparison between Bactec and Oxoid blood culture systems in a neonatal intensive care unit

For several years our laboratory has used the Bactec system for routine blood cultures from neonates. The predominant isolates are coagulase negative staphylococci, Staphylococcus aureus, coagulase positive staphylococci, Pseudomonas spp. lactobacilli, and Candida spp. As clinically important anaerobes are only very rarely isolated from neonatal blood cultures from the Southmead special care baby unit, we felt justified in substituting an Oxoid Signal bottle for the Bactec 7D (anaerobic) bottle.

The Oxoid Signal is capable of detecting the range of blood culture isolates from the unit but has not been assessed using the small volumes of blood usually cultured from neonates, and concern has been expressed about its reliability in clinical use. The table shows the organisms isolated during the period when blood culture sets of one Bactec 6B (aerobic) and one Oxoid Signal bottle were used. Coagulase negative staphylococci and Candida were grown in both systems. Bactec failed to grow a group B streptococcus and two E. coli, while Oxoid Signal failed to grow three coliforms (Klebsiella oxytoca, Escherichia coli, Proteus mirabilis).

The clinical importance of the other isolates positive in only one system is more difficult to assess. False positive results were rare, being 3.9% with Oxoid and nil with Bactec. When the same organism was isolated in both bottles, 85% (23 of 27) were positive on the same day, and the other four were positive in Bactec first. When organisms were isolated from only one bottle 17 of 25 Oxoid Signal cultures and 16 of 20 Bactec cultures were positive at 24 hours, but both failed to grow isolates likely to be clinically important.

Reasons for the failure of both bottles to isolate likely pathogens may be related to contamination or the small volume of blood inoculated into each bottle. The preponderance of coagulase negative staphylococci in neonatal cultures makes contamination rates difficult to assess, but it seems likely that the volume of blood cultures is important and the question arises as to whether the inoculum should be split between several cultures or committed to one. It may be that in the absence of blood volumes to fulfill adequately the manufacturer's protocol for a double bottle system (such as Bactec) it may be better to place all the blood available into a single bottle culture system. A further potential advantage of the use of single culture bottle regimen (Oxoid) would be an approximate 25% saving in cost compared with a double Bactec system; unlike Roberts and Kaczmarski, we did not have many false positive signals with the Oxoid system.

RJ MARSHALL
AP MACGOWAN
Department of Microbiology,
Southmead Hospital,
Bristol BS10 5NB

References

Improved blood free selective medium for isolating Campylobacter jejuni from faecal specimens

We confirm some of the observations made by workers in Preston on the efficacy of modified charcoal cefoperazone desoxycholate agar (modified CCDA) in isolating “thermophilic” campylobacters from lumen faecal specimens. We compared modified CCDA with Skirrow's medium which had been our standard selective medium. The Skirrow's medium was prepared from Columbia agar base (Oxoid CM 331), lysed horse blood, and Skirrow's selective supplement (Oxoid SR69) and modified CCDA prepared from Campylobacter blood free selective agar base (Oxoid CM 739) and a cefoperazone selective supplement (Oxoid SR125). Equal quantities of faeces were spread on each medium using a cotton tipped swab and the plates incubated microaerobically in anaerobic jars, evacuated to 550 mm Hg, before adding 10% carbon dioxide in nitrogen without a catalyst, and plates were examined after

Comparison between Bactec and Oxoid blood culture systems in a neonatal intensive care unit

For several years our laboratory has used the Bactec system for routine blood cultures from neonates. The predominant isolates are coagulase negative staphylococci, Staphylococcus aureus, coagulase positive staphylococci, Pseudomonas spp. lactobacilli, and Candida spp. As clinically important anaerobes are only very rarely isolated from neonatal blood cultures from the Southmead special care baby unit, we felt justified in substituting an Oxoid Signal bottle for the Bactec 7D (anaerobic) bottle.

The Oxoid Signal is capable of detecting the range of blood culture isolates from the unit but has not been assessed using the small volumes of blood usually cultured from neonates, and concern has been expressed about its reliability in clinical use. The table shows the organisms isolated during the period when blood culture sets of one Bactec 6B (aerobic) and one Oxoid Signal bottle were used. Coagulase negative staphylococci and Candida were grown in both systems. Bactec failed to grow a group B streptococcus and two E. coli, while Oxoid Signal failed to grow three coliforms (Klebsiella oxytoca, Escherichia coli, Proteus mirabilis).

The clinical importance of the other isolates positive in only one system is more difficult to assess. False positive results were rare, being 3.9% with Oxoid and nil with Bactec. When the same organism was isolated in both bottles, 85% (23 of 27) were positive on the same day, and the other four were positive in Bactec first. When organisms were isolated from only one bottle 17 of 25 Oxoid Signal cultures and 16 of 20 Bactec cultures were positive at 24 hours, but both failed to grow isolates likely to be clinically important.

Reasons for the failure of both bottles to isolate likely pathogens may be related to contamination or the small volume of blood inoculated into each bottle. The preponderance of coagulase negative staphylococci in neonatal cultures makes contamination rates difficult to assess, but it seems likely that the volume of blood cultures is important and the question arises as to whether the inoculum should be split between several cultures or committed to one. It may be that in the absence of blood volumes to fulfill adequately the manufacturer's protocol for a double bottle system (such as Bactec) it may be better to place all the blood available into a single bottle culture system. A further potential advantage of the use of single culture bottle regimen (Oxoid) would be an approximate 25% saving in cost compared with a double Bactec system; unlike Roberts and Kaczmarski, we did not have many false positive signals with the Oxoid system.

RJ MARSHALL
AP MACGOWAN
Department of Microbiology,
Southmead Hospital,
Bristol BS10 5NB

References

Improved blood free selective medium for isolating Campylobacter jejuni from faecal specimens

We confirm some of the observations made by workers in Preston on the efficacy of modified charcoal cefoperazone desoxycholate agar (modified CCDA) in isolating “thermophilic” campylobacters from lumen faecal specimens. We compared modified CCDA with Skirrow's medium which had been our standard selective medium. The Skirrow's medium was prepared from Columbia agar base (Oxoid CM 331), lysed horse blood, and Skirrow's selective supplement (Oxoid SR69) and modified CCDA prepared from Campylobacter blood free selective agar base (Oxoid CM 739) and a cefoperazone selective supplement (Oxoid SR125). Equal quantities of faeces were spread on each medium using a cotton tipped swab and the plates incubated microaerobically in anaerobic jars, evacuated to 550 mm Hg, before adding 10% carbon dioxide in nitrogen without a catalyst, and plates were examined after
Comparison between Bactec and Oxoid blood culture systems in a neonatal intensive care unit.
R J Marshall and A P MacGowan

J Clin Pathol 1988 41: 704
doi: 10.1136/jcp.41.6.704-a

Updated information and services can be found at:
http://jcp.bmj.com/content/41/6/704.1.citation

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/