Rapid method for fetal brain fixation

J M NICHOLLS Department of Histopathology, The Queen Elizabeth Hospital, Woodville, South Australia

SUMMARY A quicker alternative to the standard removal and fixation of brain tissue was sought. Whole fetal brains were fixed in situ using a mercuric based fixative. The subarachnoid space was perfused overnight with Heidenhain's Susa fixative. The following day the brains were removed from the cranium in the standard manner. After storage for three days in Susa's fixative the brain was sliced and processed, with excellent preservation of gross and microscopic architecture. The cost is only marginally higher than that of commercial formalin.

Fetal brains are soft and often damaged when removed from the cranium. In cases of maceration the brain is semi-liquid and cannot be removed intact. Various methods have been described to facilitate removal and fixation of the brain but these require fixation for periods of one to six weeks. Traditionally, the most common fixative has been 10% neutral buffered formalin with concentrated (40% formaldehyde) formalin solution used occasionally. The method described below has been used in over 20 fetal brains and uses a mercuric based fixative. It has two advantages: the architecture is preserved and the brain can be sectioned after three days' fixation.

Material and methods

The scalp is reflected in the standard manner. Once the anterior and posterior fontanels are exposed a 1 to 2 mm nick is made with a No 15 scalpel blade in the anterior fontanelle 2 to 3 mm lateral to the midline. Cerebrospinal fluid cultures can be taken at this stage if required. A new or used epidural catheter is inserted into this nick and fed medially and anteriorly until contact with the base of the cranium is reached. The subarachnoid space is then perfused with Heidenhain's Susa fixative. The volume depends on the gestation of the fetus. Fetuses of 16 weeks' gestation require only 5 ml; those of term gestation may require upwards of 40 ml. The injection is performed until the fontanels become taut but not distended. In larger fetuses the posterior fontanelle may be injected in a similar way. The skin is returned to the normal anatomical position and the fetus is left overnight in the mortuary refrigerator.

The following day the skull is opened using a modification of the Beneke technique or that proposed by Valdes-Dapena and Huff. It will be noted that the brain is often a bright white colour instead of the usual light tan colour. After removal the brain is weighed and placed in an adequate volume of Susa's fixative. Full term brains may be sectioned once to allow access of the fixative to the ventricles, but it has been found that this is not necessary for brains under 36 weeks' gestation. The brain is stored for three days, washed, and then cut. The procedure may be delayed for up to three weeks, however, if the tissue is left in fixative for longer. The microtome sections may then be difficult to cut, with some chattering artefact of the section. This has proved the only main drawback to the technique. The cut slices can be retained in fixative for further study after the initial blocks have been taken, but yet again, a degree of hardness will be

Fig 1 Transverse section of brain at 18 weeks' gestation. (Haematoxylin and eosin.)

Accepted for publication 7 April 1988
encountered if sections are taken after three weeks. Mercury will discolor metal knives so running water is essential for frequent rinsing of instruments. Mercury is also a toxic waste so the residual solution has to be stored in a separate container, either for disposal or for future brain fixation. The fixative is marginally more expensive than commercial formalin but this cost is negligible when the amount of fixative used and the reusability of the fixative is considered.

Results

Microscopic sections are of a high quality with excellent preservation of anatomical detail (figs 1–3). The mercuric pigment is removed using a standard alcoholic-iodine solution and does not prevent the use of immunoperoxidase studies. The brain is firm when cut, permitting accurate assessment of cerebral and cerebellar architecture.

References

Requests for reprints to: Dr J M Nicholls, Department of Histopathology, The Queen Elizabeth Hospital, Woodville Road, Woodville, South Australia 5011, Australia.
Rapid method for fetal brain fixation.

J M Nicholls

J Clin Pathol 1988 41: 1019-1020
doi: 10.1136/jcp.41.9.1019

Updated information and services can be found at:
http://jcp.bmj.com/content/41/9/1019

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/