normal anatomy section of the palatine tonsil in his book, and certainly we did not regard this a teratoid tumour.

This hair, we think, is unlikely to have been ingested because there is a well defined follicle adjacent to normal tonsillar tissue. Ingested hairs would be expected to have associated fibrosis and giant cells—not seen in our case. Levels had been cut from our lesion and no fibrosis or giant cells were identified.

This case illustrates the beauty of histopathology—one photograph can give rise to several interpretations and perhaps we are both within a ‘hair’s breath’ of the truth.

Dipstick urinalysis for bacteriuria

We were interested to read the description by Doran and Kensit of the use of the Clinitec 200 to predict the presence of bacteriuria.1 This apparatus has been evaluated recently in a similar study in our laboratory.

A total of 1085 urine samples from hospital and community patients were examined. Each sample was tested with a multiple reagent strip for blood, protein, nitrite and leukocyte esterase and the results read semiautomatically by a Clinitec 200 reflectance photometer (Ames Laboratories, Slough, Buckinghamshire, England). One or more positive tests was scored as a positive result. The urine samples were then cultured semiquantitatively on cysteine lactose electrolyte-deficient (CLED) agar and counts of \(\geq 10^3 \) organisms/ml taken as an indication of significant bacteriuria.

Of the 1085 samples, 726 (67%) were negative by the reagent strip tests but 18 (2%) of these subsequently grew significant numbers of bacteria on culture. Of the remaining 359 (33%), which were positive by the reagent strip tests, 120 (11%) were false positive results. The indices using the formulas described by Krieg et al2 are set out in the table.

Despite an apparently high degree of success in excluding bacteriuria, it must be remembered that in our study there were still 18 false negative results, accounting for 7% of all samples with culturally confirmed bacteriuria. This figure, which is similar to the 10% reported by Doran and Kensit,1 is substantial. Inevitably patients with urinary tract infection would fail to have the diagnosis made (or confirmed) and information about the antimicrobial sensitivity of the causal organism would never be available.

Because there were many fewer false positive results in our study, there was a considerable increase in the specificity and the predictive value for a positive reagent test. The specificity we report was also higher than the 38% observed by Lowe.3 It is interesting that our result is in keeping with the 76% specificity of manual dipstick urinalysis reported in a recent comparative evaluation of screening methods for bacteriuria in this journal.4 In that study, however, the relatively non-specific protein test was excluded. The reasons for these discrepancies are not clear, but at a practical level would directly influence the number of urine samples unnecessarily cultured.

The method is not attractive unless the investment in time and expense of using the Clinitec 200 is more than compensated by a reduction in the work of culturing negative specimens. A further problem is that all inpatients are likely to have at least one dipstick urinalysis carried out on the ward and consequently the use of the Clinitec 200 in the hospital laboratory will duplicate tests already done—although they may be carried out more accurately.

There is not a clear cut case for the use of this method as a routine screening procedure in microbiology departments. It disappoints because of inaccurate results—negative results that lead to a missed diagnosis and positive ones that fail to reduce the workload. There is also no indication of a substantial financial saving. Perhaps the method could find a niche in screening selected patient groups such as pregnant women and children for asymptomatic bacteriuria.

JE COIA
G WILLS
University Department of Bacteriology,
Glasgow Royal Infirmary,
Castle Street,
Glasgow G4 0SF

Table Comparison of different indices used to estimate value of Clinitec 200 as predictor of bacteriuria in two studies

<table>
<thead>
<tr>
<th></th>
<th>This study (n = 1085)</th>
<th>Doran and Kensit study (n = 669)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity (%)</td>
<td>93</td>
<td>91</td>
</tr>
<tr>
<td>Specificity (%)</td>
<td>85</td>
<td>38</td>
</tr>
<tr>
<td>Predictive value for positive result (%)</td>
<td>66</td>
<td>26</td>
</tr>
<tr>
<td>Predictive value for negative result (%)</td>
<td>97</td>
<td>95</td>
</tr>
</tbody>
</table>

References
2 Krieg AF, Gambino R, Galen RS. Why are clinical tests performed? When are they valid? JAMA 1975;233:76–8.

Book reviews

This volume is the fourth of a new series entitled Current Problems in Tumour Pathology—the Pathobiology of Malignant Disease. No doubt the editors of different volumes in the series will interpret the term “pathobiology” differently. In this volume, the two editors, Dr Habeshaw and Professor Lauder, have assembled a group of distinguished contributors from a variety of different disciplines, each of whom has written an essay on a topic related to some aspect of malignant lymphoma in which the author has particular expertise. The subjects range from epidemiology to the cellular origin of Hodgkin’s disease and from cytogenetics to diagnosis, staging, and management. Although several of the individual contributions are outstanding, it is not easy to see for what class of reader the book as a whole is intended. The volume is beautifully produced and the illustrations are of a high quality but the text is unfortunately marred by many typographical errors.

AG STANSELD

This book gives a comprehensive account of the vulva and its pathology starting with the background embryology, anatomy, and physiology, ranging through the various clinical and pathological aspects of vulval disease, and even including historical and psychological considerations. Everything from nappy rash and the psychological effects of rape to techniques of DNA hybridisation is here. While it may be admirable to have such an all inclusive account of this anatomical area, it does beg...
Dipstick urinalysis for bacteriuria.

J E Coia and G Wills

J Clin Pathol 1989 42: 444
doi: 10.1136/jcp.42.4.444-a

Updated information and services can be found at:
http://jcp.bmj.com/content/42/4/444.1.citation

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/