Hypcalcaemia and osteolytic lesions associated with chronic lymphatic leukaemia (CLL)

Case 1
A 72 year old man had cervical and axillary lymphadenopathy and an enlarged spleen palpable 1 cm below the costal margin. A blood count showed that his haemoglobin concentration was 11·5 g/dl (normal range: 12·5-16·0 g/dl), his white cell count was 1·14 x 10^9/l (normal range: 4·0-10·0 x 10^9/l), his lymphocytes were 105 x 10^9/l and his platelet count 250 x 10^9/l (normal range: 150-400 x 10^9/l). A biochemical screen, including that for serum calcium concentration, was normal. A bone marrow aspirate and trephine biopsy specimen showed dense infiltration with small mature lymphocytes, and chronic lymphatic leukaemia (CLL) was diagnosed. The disease was easily controlled by short, intermittent courses of chlorambucil.

Three years from diagnosis and while not receiving treatment, the patient was admitted with a two week history of thirst, malaise, and vomiting. Examination showed that he was dehydrated, had enlarged cervical lymph nodes, an enlarged liver palpable 3 cm below the right costal margin and an enlarged spleen palpable 4 cm below the left costal margin. The haemoglobin concentration was 9·1 g/dl, the white cell count 14·8 (small mature lymphocytes 9·1 x 10^9/l, prolymphocytes 3·9 x 10^9/l), and the platelet count 142 x 10^9/l. Serum calcium was 3·66 mmol/l (normal range 2·20-2·65 mmol/l), phosphate 0·9 mmol/l (normal range 0·70-1·30 mmol/l), and alkaline phosphatase activity 101 IU/l (normal range 28·142 IU/l). Serum albumin was 34 g/l (normal range 35-45 g/l). The area, circumference, and caliper measurements were normal. The serum parathormone concentration was <0·1 pfu/ml (normal range <0·5 pfu/ml) and vitamin D concentration was 100 pmol/l (normal range 150-100 pmol/l). A chest X-ray and bone scan showed osteolytic porosis and multiple lytic lesions throughout the skull. No serum or urinary paraprotein was detected.

Treatment with chlorambucil 6 mg/day, prednisolone 40 mg/day, frusemide 40 mg/day and intravenous fluids was begun, and after three days the calcium had fallen to 3·0 mmol/l. Intravenous mithramycin (25 µg/kg/day) for three days was given, after which the calcium concentration was 2·05 mmol/l. Two weeks later a further course of mithramycin was necessary as the calcium concentration had risen to 3·7 mmol/l. A further short-lived response was achieved but three weeks later the patient fell, fractured his femur and pelvis, and died shortly afterwards from bronchopneumonia.

Case 2
A 70 year old woman had Binet stage A CLL. No treatment was needed for four years after which short intermittent courses of chlorambucil controlled a rising lymphocyte count and lymphadenopathy.

About six months after diagnosis she fell and fractured the left humerus. Radiographs showed lytic lesions at the site of fracture and also throughout the skeletal. She had progressed to stage C CLL at this time. There was no evidence of a second malignancy.

During the next six months further lytic lesions developed in association with severe generalised osteopenia. Crush fractures of several vertebrae developed. Death from bronchopneumonia ensued 10 months after she fractured her humerus.

Biochemistry screens (including serum calcium, phosphate, and alkaline phosphatase) were normal throughout the last year of life and no serum or urinary paraprotein was present.

Hypcalcaemia is a rare complication of CLL which occurs most frequently in the setting of advanced disease. Hyperparathyroidism has been described in patients with early stage disease but in many of these patients coincidental primary hyperparathyroidism has been found. 2 Where hyperparathyroidism is not detected the cause of the hypocalcaemia has been attributed to increased osteoclastic activity secondary to secretion of osteoclast activating factor by malignant lymphocytes.

The prognosis for patients with advanced disease and normal or low serum parathyroid hormone activity was generally measured in weeks despite treatment directed at both the CLL and the hypocalcaemia. 3 In contrast, hypocalcaemia complicating early stage disease or secondary to hyperparathyroidism may be associated with survival for several years. 4

Hypocalcaemia and osteolytic bone lesions may complicate CLL. The prognosis is generally poor but primary hyperparathyroidism should be excluded as this group of patients, if correctly treated, fare much better.

T J LITTLEWOOD
APM LYNAM
AM BARTON
Department of Haematology,
Royal Berkshire Hospital,
Reading

Thoracic aortic disease due to salmonella

Case report
A 62 year old college lecturer was admitted with a six month history of night sweats, arthralgia, and lethargy. Two weeks before admission he developed haemoptysis, hoarseness, and continuous left shoulder pain. There was no history of recent foreign travel, nor diarrhoeal illness in the patient or his family, nor a notable medical history. On examination he had fluctuating fever up to 38·5°C. His blood pressure was 110/80 mm Hg in both arms with a systolic murmur at the left sternal edge and a peripheral rub. A chest X-ray picture, which had been normal four months earlier, showed a left hilar mass. His white cell count was raised at 18·6 x 10^9/l, with an erythrocyte sedimentation rate of 116 mm/hr. The serum calcium was normal, 8·6 µg/ml and an IgG cryoprotein was detected. Six blood cultures and culture of urine were negative. At bronchoscopy the left vocal cord was seen to be paralysed, with extrinsic compression of the trachea and left main bronchus. Culture of bronchial washings was negative. A computed tomogram of the thorax (figure) showed aneurysmal dilatation of the thoracic aorta; this was confirmed at

Downloaded from http://jcp.bmj.com/ on June 19, 2017 - Published by group.bmj.com
Hypercalcemia and osteolytic lesions associated with chronic lymphatic leukemia (CLL)
T J Littlewood, A P Lydon and C J Barton

J Clin Pathol 1990 43: 877
doi: 10.1136/jcp.43.10.877-a

Updated information and services can be found at:
http://jcp.bmj.com/content/43/10/877.1.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/