Inhibitory effects of urine on the polymerase chain reaction for cytomegalovirus DNA

G Khan, H O Kangro, P J Coates, R B Heath

Abstract
The inhibitory effects of urine samples taken from neonates and older children, some of which were known to be infected with cytomegalovirus, on the polymerase chain reaction (PCR) were investigated. Urea was the major inhibitory component of urine and inhibited the PCR at a concentration of more than 50 mM. Urine samples from older children were more inhibitory than those from neonates. This correlated with the higher concentration of urea generally found in urine samples from older children compared with neonatal urines. Two of 13 neonatal urine samples, however, were inhibitory despite low urea concentrations—presumably due to metabolites derived from parenteral nutrition. The inhibitory effects of urine were effectively removed by simple dialysis or ultrafiltration. The sensitivity and specificity of PCR for detecting cytomegalovirus DNA in urine were further improved by using “nested” primers and a modified PCR protocol entailing the use of reduced reactants in the first 20 cycles of a two-stage 50 cycle PCR.

Human cytomegalovirus (CMV) is a common infectious agent which can cause severe morbidity and mortality in immunocompromised patients, such as allograft recipients and patients with AIDS. CMV infection during pregnancy is also recognised as a major viral cause of abnormalities in the newborn. Isolation of CMV from urine or throat swabs in human embryonic fibroblast cultures is the definitive method of diagnosing congenital CMV infection but can take up to three weeks to perform. Hence there is a need for a more rapid and convenient method. The DEAFF test can reduce the time required to 24–48 hours but still requires virus infectivity and appropriate monoclonal antibodies.

Alternative methods for detecting CMV in urine have been used including electron microscopy, antigen detection by enzyme linked immunosorbent assay (ELISA), and viral DNA detection by nucleic acid hybridisation. None of these, however, meets all the required criteria of being rapid, specific, and sensitive.

The development of the polymerase chain reaction (PCR) has had a great impact on many areas of molecular medicine. It has been used for the diagnosis of genetic disorders such as cystic fibrosis and sickle cell anaemia, as well as for the detection of latent or persistent viruses, including the herpes viruses and human immunodeficiency virus (HIV). PCR permits the in vitro amplification of specific DNA sequences by a factor of 10^9 or more within a few hours and is, therefore, potentially very sensitive. It is based on an enzymatic reaction involving the use of synthetic oligonucleotides which flank the target sequences and which act as primers for the heat stable enzyme Taq polymerase. Repeated cycles of heat denaturation of the template DNA, annealing of the primers to their complementary sequences, and extension of the annealed primers by the Taq polymerase result in the exponential production of the specific target fragment.

PCR has been used for the detection of CMV in urine, but problems have been encountered with inhibitory activity of urine. In preliminary studies we experienced similar problems when testing 45 randomly selected urine samples from infants, some of which were known to contain CMV by conventional virus isolation, and all gave negative results by PCR. This prompted us to investigate the nature of the inhibitory component of urine. We report the results of these studies and propose methods for the removal of the inhibitory component, as well as an improved amplification method for CMV DNA using nested oligonucleotide primers.

Methods
Urine samples from neonates and children of varying age up to 10 years old were selected from specimens submitted to the Virology Department for routine virus isolation and from a collection of specimens supplied by Dr J Booth (St George’s Hospital Medical School) as part of a collaborative study. All urine samples were from original specimens stored at −70°C without preservatives or transport medium added. Routine virus isolation had previously been performed on the urine specimens in human foreskin fibroblasts (HFF) or embryonic lung fibroblasts (HEL) maintained under Eagle’s minimum essential medium supplemented with 5% fetal calf serum. Positive control material containing cytomegalovirus (CMV) DNA was prepared from HFF cultures infected with CMV (strain AD169). Cultures showing about 80% cytopathic effect were scraped into phosphate buffered saline (PBS) (pH 7.3) and stored in aliquots at −70°C.

Department of Virology, St Bartholomew’s Hospital Medical College, West Smithfield, London EC1A 7BE
G Khan
H O Kangro
R B Heath

Department of Histopathology
P J Coates

Correspondence to:
Dr H Kangro

Accepted for publication
17 January 1991
SAMPLE PREPARATION FOR PCR

Urine samples were processed by dialysis or ultrafiltration before PCR. For dialysis, aliquots of urine were dialysed against 200 volumes of 0·1 M TRIS-HCl buffer (pH 8·3) overnight at 4°C. The samples were stirred. Two commercial tube systems were used for ultrafiltration of urine specimens—Centricon-100 (Amicon) and Ultrafree MC Filter Units 100 K (Millipore). With the Centricon tubes, 1–2 ml of urine was placed in the filtration cup and filtered through almost to dryness by centrifugation in a Mistral 2L MSE centrifuge at 750 rpm for 30–45 minutes. The remainder was rinsed once with sterile distilled water and then recovered in sterile distilled water to the original volume by centrifugation at 500 rpm for two to three minutes. With the Ultrafree MC cups, 200 μl of urine were filtered by centrifugation at 6500 rpm for five minutes in a microfuge (MSE). The retentate was rinsed once with 200 μl sterile distilled water and then carefully resuspended in a further 200 μl sterile distilled water. In some experiments attempts were made to precipitate virus particles from urine with polyethylene glycol (PEG) by adding 0·1 ml PEG (50% stock in 0·1 M phosphate buffer, 0·5 M NaCl) to 0·4 ml urine. After overnight incubation at 4°C the mixtures were centrifuged at 13 000 rpm for five minutes in a microfuge and pellets were resuspended in about 100 μl sterile distilled water. Attempts were also made to solubilise virus particles from urine into the water-immiscible solvent ethyl acetate by shaking 0·5 ml urine with an equal volume of ethyl acetate for two to five minutes. The mixtures were then left on the bench to separate and the solvent (top) layer was carefully recovered.

Aliquots of 100–200 μl of untreated urine or material from processed urine samples were placed at 100°C for 15 minutes and 50 μl of boiled samples were then used for PCR unless otherwise stated.

PREPARATION OF OLIGONUCLEOTIDE PRIMERS

Oligonucleotides were custom synthesised using the 380B or 391 DNA synthesisers (Applied Biosystems). The oligonucleotides were deprotected after synthesis, precipitated with ethanol, and used without further purification. CMV primer sets were chosen from the morphological transforming region II (mtrII). The sequences are given from 5' to 3': CMTR—CTG TCG GTG ATG GTC TCT TT; CMTR—CCC GAC ACG CGG AAA AGA AA. These span a 234 base pair segment. A second set of “nested” primers were chosen from the same region: CMTR 3—TCT CTG GTC GTC ATG GTC TCT TT; CMTR 4—GTC ACC TAC CAA CGT AGG TT. These span a 168 base pair segment located within the first primer pair.

DNA from uninfected human fibroblasts and cells infected with human herpes virus 6 (HHV-6), Epstein–Barr virus (EBV), herpes simplex virus (HSV) or varicella zoster virus (VZV) gave negative results by PCR with both the above primer sets.

POLYMERASE CHAIN REACTION

The PCR was performed essentially as described by Saiki et al using cloned DNA polymerase from Thermus aquaticus (AmpliTAQ; Perkin-Elmer Cetus) and following the manufacturer’s protocol. All preparative work for the PCR was carried out in an ultraviolet irradiated class II microbiological safety cabinet, using autoclaved plastic tubes and pipette tips throughout. Amplification reactions were carried out in a total volume of 100 μl comprising 50 μl reaction buffer and 50 μl test sample in 0·6 ml microcentrifuge tubes. The reaction buffer was prepared in bulk (“mastermix”) at double strength—to give final concentrations of 10 mM TRIS-HCl (pH 8·3) 50 mM KCl, 1·5 mM MgCl2, 0·01% gelatin, 0·2 mM of each deoxynucleoside triphosphate and 0·2 μM of each oligonucleotide primer—and stored in aliquots at −20°C. The required quantity of “mastermix” was thawed and the AmpliTAQ was added to give a final concentrations of 2·5 units per reaction tube. The reaction mixture was dispensed into 0·6 ml microcentrifuge tubes and the test sample was added, either neat or appropriately diluted with sterile distilled water, using sterile 50 μl glass capillaries. The reaction mixtures were overlaid with mineral oil (about 100 μl) to prevent evaporation. Reaction tubes containing positive and negative CMV DNA control samples were included in each batch of tests. The PCR was performed in a DNA Thermal Cycler (Perkin-Elmer Cetus) using the following amplification procedures:

Standard procedure The samples were amplified through 30 cycles consisting of denaturation at 94°C for one minute, annealing at 60°C for one minute and primer extension at 72°C for two minutes. During the final 10 cycles, the extension time was increased by 10 seconds with each cycle. After the final cycle the reaction tubes were left at 4°C until collected.

In some experiments a modified two stage procedure was used as previously described. Briefly, the test samples were initially amplified through 20 cycles in the presence of reduced deoxynucleoside triphosphates (0·1 mM of each), primers (0·02 μM) and AmpliTAQ (0·375 units per tube). Aliquots of 5 μl of these amplified products, plus 45 μl of sterile distilled water were then transferred (in a separate room) to fresh reaction tubes, containing standard “mastermix”, and 30 amplification cycles were performed according to the standard procedure.

Procedure with nested primers This was basically a modification of the above two stage procedure where the test samples and controls were initially subjected to 20 amplification cycles in the presence of reduced deoxynucleoside triphosphates, the first set of primers, and AmpliTAQ. Aliquots of 5 μl of amplified samples were transferred to fresh reaction tubes containing “mastermix” with the nested primer set. The reactions were then performed according to the standard protocol for 30 cycles.
Results

In preliminary experiments 45 urine samples from neonates and young children were tested for CMV DNA by PCR, either neat or diluted 1 in 10, or 1 in 50 in sterile distilled water, and all gave negative results, including samples which had been shown to contain CMV by virus isolation. Dialysis of the urine samples before the PCR rendered some of the samples positive (fig 1). It was concluded that a low molecular weight constituent of urine is inhibitory to the PCR.

NATURE OF INHIBITORY ACTIVITY OF URINE ON PCR

The inhibitory nature of urine on PCR was confirmed by mixing fresh adult urine at varying concentrations with CMV positive control material. Urine dilutions of up to 1 in 16 (equivalent to 3·125 μl in 100 μl reaction mixture) completely inhibited the PCR. Sterile distilled water substituted for urine showed no such effect (results not shown).

Urea was thought to be an inhibitory substance in urine. A dilution series of urea in sterile distilled water was therefore mixed with CMV positive control material: it was shown that urea is completely inhibitory down to a final concentration of 100 mM and partially inhibitory even at 50 mM (fig 2). This effect could be overcome by dialysis before the PCR.

The inhibitory activity of urine in relation to the concentrations of urea, creatinine, and electrolytes was investigated next using five neonatal urine samples and five urine samples from children under 10 years old (table 1). The urine samples were mixed at ratios of 9:1 (90%) and 1:9 (10%) with positive CMV control material, and 50 μl of the mixtures were then used for the PCR. The inhibitory activity of the urine samples showed a correlation with the urea concentration but not with creatinine or electrolytes (table 1). Thus urea concentrations between 68 and 165 mM were inhibitory with the 90% mixtures but not at 10%, while one urine with 325 mM urea was inhibitory with both mixtures (fig 3). Urea concentrations of ≤43 mM (mainly in neonatal urine samples) were not inhibitory except with one urine (No 19) which had an exceptionally low urea concentration of 10 mM.

Further chemical analyses of these 10 urines showed no abnormalities (table 2) that could be correlated with their inhibitory activity in the PCR, except that the inhibitory neonatal urine (No 19) with low urea was reactive for glucose. To determine whether this was a common finding a further eight neonatal urine samples, with urea concentrations ranging from 9·9 to 170 mM (mean 49·6 mM) were tested for inhibitory activity in 90% mixtures with CMV control material. Once again, the urine sample with the lowest urea concentration was unexpectedly found to be inhibitory and was reactive for glucose.

Glucose mixed with the CMV control, however, was not in itself inhibitory in the PCR at concentrations ranging from 15–500 mM. One possible source of glucose in neonatal urine is from parenteral feeding, and while it
was not possible to ascertain with the two aforementioned neonates whether they had received such feeding, standard parenteral nutrition formulation (Kendall Laboratories Ltd) completely inhibits the PCR down to 70% concentration mixed with positive CMV control material (results not shown).

Table 1 Inhibitory effects of urines on PCR in relation to concentrations of urea, creatinine, and electrolytes

<table>
<thead>
<tr>
<th>Urine sample</th>
<th>Urea (mmol/l)</th>
<th>Creatinine (mmol/l)</th>
<th>Na⁺ (mmol/l)</th>
<th>K⁺ (mmol/l)</th>
<th>Inhibition of PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonates:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>165</td>
<td>11.5</td>
<td>70</td>
<td>76</td>
<td>– + + –</td>
</tr>
<tr>
<td>19</td>
<td>10</td>
<td>1.0</td>
<td>132</td>
<td>29</td>
<td>– + + ND</td>
</tr>
<tr>
<td>22</td>
<td>43</td>
<td>3.0</td>
<td>62</td>
<td>20</td>
<td>– – – –</td>
</tr>
<tr>
<td>23</td>
<td>18</td>
<td>0.8</td>
<td>3.0</td>
<td>9.0</td>
<td>– – – –</td>
</tr>
<tr>
<td>37</td>
<td>40</td>
<td>0.8</td>
<td>7.0</td>
<td>24</td>
<td>– – – –</td>
</tr>
<tr>
<td>Children:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>325</td>
<td>19.0</td>
<td>ND</td>
<td>ND</td>
<td>+ + + ND</td>
</tr>
<tr>
<td>14</td>
<td>85</td>
<td>8.2</td>
<td>>200</td>
<td>69</td>
<td>– – – –</td>
</tr>
<tr>
<td>15</td>
<td>134</td>
<td>4.1</td>
<td>70</td>
<td>13</td>
<td>– – – –</td>
</tr>
<tr>
<td>28</td>
<td>68</td>
<td>8.9</td>
<td>>200</td>
<td>120</td>
<td>+ + + +</td>
</tr>
<tr>
<td>43</td>
<td>129</td>
<td>9.7</td>
<td>138</td>
<td>31</td>
<td>– – – –</td>
</tr>
</tbody>
</table>

ND – Not done due to insufficient sample.

Discussion

The development of the PCR has revolutionised the detection and analysis of nucleic acids. Within the past two years it has established itself as one of the most promising tools of molecular biology to be applied both for research purposes and routine diagnosis.14-16 The PCR is technically relatively simple to perform yet offers a very high level of sensitivity. Further attractions are that as a technique it can be used to detect virtually all infectious agents and on a wide variety of specimens. It has therefore been used for the detection of viral DNA or RNA in peripheral blood,17,18 in urine,19-21 and even paraffin wax embedded, formalin fixed tissue22-23 using simple extraction procedures.13
The PCR is essentially an enzyme reaction and requires carefully controlled conditions for efficient amplification. It is therefore not surprising to find that it may be susceptible to interference by metabolites, drugs (especially nucleoside analogues), or other biological substances found in the body fluids of patients. This is an area which will undoubtedly require careful investigation in the future.

Urine could be expected to present particular problems in the PCR as it is the main vehicle for excretion of breakdown products and drugs from the body, and its composition is therefore highly variable. It is also the commonest site of virus excretion in those infected with CMV and this plays an important part in the diagnosis of congenital CMV infections. Other investigators using PCR for the detection of CMV in urine have reported problems with inhibitory activity. We have shown that urea is a potent inhibitor of the PCR, completely inhibiting the reaction at concentrations of more than 50 mM. The normal concentration of urea in adult urine is about 330 mM.

Furthermore, we showed that the inhibitory activity of urine samples from neonates and older children was directly related to the urea concentrations in these urine samples. Neonatal urine samples generally contain less urea than those from older children and were found to be less inhibitory in the PCR. Urea therefore seems to be the predominant inhibitory constituent of urine. The nature of this inhibitory activity is not known, but urea is a potent inhibitor of non-covalent bonding and may act directly on the polymerase, or it may prevent primer annealing. Two neonatal urine samples were found to be inhibitory in spite of low urea concentrations. Both contained glucose and while we did not identify the cause of this activity it is likely that it originated from parenteral nutrition, which we found to be inhibitory in its supplied, packaged form. The diversity of potentially inhibitory substances that may be excreted in patients' urine has to be taken into account when attempting their removal before using PCR. Prior dilution of the urine to reduce the urea concentration may be effective with most neonatal urine samples but will require a dilution factor of at least 1 in 10 to 1 in 20 to prevent the risk of any inhibition. This does not allow for the possibility, however, that other, more potent inhibitors may be present occasionally. Furthermore, it inevitably reduces the sensitivity of the technique which may be important because infected neonates may excrete as little CMV as 10^3 particles/ml. We have shown that ultrafiltration is a simple and effective method for the removal of low molecular weight inhibitors from urine samples. Small samples of urine can be processed easily within 10–15 minutes before using the PCR and at minimal cost using the Millipore centrifuge cups. If required, the urine samples can be concentrated during this process. Despite the successful removal of inhibitory activity of urine the virus specific bands were still often found to be weak under ultraviolet light. Attempts to increase the sensitivity by increasing the number of cycles invariably led to increased background. The use of nested primers and a modified two-stage PCR protocol, using reduced reactants, significantly increased both sensitivity and specificity of the reaction.

Table 2 Chemical analyses* on urines showing inhibitory activity in PCR

<table>
<thead>
<tr>
<th>Urine sample</th>
<th>pH</th>
<th>Protein</th>
<th>Glucose</th>
<th>Ketones</th>
<th>Urobilinogen</th>
<th>Bilirubin</th>
<th>Blood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neorates:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Children:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>6.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>6.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Negative result.

*Using the BM Test 7 (Boehringer Mannheim).
Inhibitory effect of urine on PCR

Inhibitory effects of urine on the polymerase chain reaction for cytomegalovirus DNA.

G Khan, H O Kangro, P J Coates and R B Heath

J Clin Pathol 1991 44: 360-365
doi: 10.1136/jcp.44.5.360

Updated information and services can be found at:
http://jcp.bmj.com/content/44/5/360

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/