CORRESPONDENCE

Storage of sliced breast biopsy specimens

In their review of the laboratory handling of impalpable breast lesions Drs Armstrong and Davies emphasise the need to be able to identify individual slices of the specimen during storage in case further blocks of tissue are required. Their method of placing each slice into a separate compartment of a plastic bag clearly achieves this aim but is quite time consuming.

In our laboratory, once blocks of tissue have been taken, the remaining slices are strung on to suture material in the same order as on the laboratory x-ray picture of the slices. Once the ends of the suture are knotted the slices will remain in that order and can be easily identified if further blocks are required. The “necklace” of slices can then be stored in plastic bags or specimen pots according to local practice. Depending on the number of slices, one packet of suture material will be adequate for several specimens. 3/0 silk (salvaged from theatre) has proved quite satisfactory and does not damage the tissue. We have found this technique to be quick, effective, and relatively cheap.

Use of whole mount sections for reporting mammographic specimens

Armstrong and Davies are correct to highlight the advantage that large sections have in showing the resection margins of mammographic specimens. We take issue concerning the claim that the sections are of inferior quality to the standard sized sections, require expensive equipment, and specialised skills. In Worthing we have been reporting mammographic specimens using whole mount sections for more than two years, based on the method described by Gibbs. After initial, teething troubles we had no difficulty in perfecting this method.

The tissue slices are processed overnight in a Miles VIP tissue processor, together with the routine tissue blocks, for sectioning the next day. Most of the sections are mounted on 3 x 2 inch slides, though occasionally 4 x 3 inch slides are used. To obtain these sections we use a standard Leitz 1400 base sledge microtome that is very old. We find that the sections produced are of excellent quality and certainly as good as those from standard blocks. No special technical expertise is required. The only additional costs are those of the larger specimen block holders, slides, and cover slips.

The advantages of this method are that it reveals the whole of the lesion and its relation to the excision margins, and permits an accurate measurement of the lesion. We do not wish to be too dogmatic about this approach and realise that individual pathologists have their own preferences, but there is clearly no reason to abandon this method.

Laboratory handling of impalpable breast lesions

I was surprised to read the authors' comments on the large section method which they developed for the examination of biopsy specimens in general and which has been in routine use in Guildford since 1979. These specimens include localisation biopsy specimens which only form a small proportion of screening pathology examinations.

Most of the blocks we cut measure no more than 7 cm in maximum diameter after fixation and are cut at 4 mm in the line of the duct system on a standard sledge microtome using a large block holder which is readily available (fibre block or standard vice; Anglia Scientific). Each localisation specimen is thus reduced to two or three blocks which are cut and stained to provide a permanent record which can then be re-examined by any pathologist without the need to refer to jig-saw puzzles of numerous small blocks cut at right angles to the duct system. Laboratory x-ray machines are not required as there is no need to paint the perimeter. This enables clearance margins to be measured accurately as well as the size of the lesions. Discontinuous lesions, such as in situ ductal carcinoma, can be accurately mapped, although these cases are not large specimens for mammography for visualising the microcalcification and dilated ducts seen in disseminated carcinoma in situ. It thus needs the differentiation of a multicentric carcinoma from a multifocal tumour, as well as identifying associated disseminated carcinoma in situ palpable tumours.

The method we advocate has been specifically devised to produce conventional blocks that can be dealt with once they reach the automatic processor. We have now used this method in more than 200 cases, and we have no cases in which we were unable to produce the data Professor Gibbs and Davies refer to. We have had good clinical and whole specimen mammography for visualising microcalcification and dilated ducts seen in disseminated carcinoma in situ. We like to feel we are building on Rokitsansky rather than forgetting him.

Postoperative necrotising granulomas in the ovary

We read with interest the cases presented by LJ McWilliam et al. and would like to report a further case of postoperative necrotising granuloma in the ovary. A 41 year old woman had primary infertility. A laparoscopy in 1985 showed noticeable adhesions around both ovaries and tubes. No biopsy specimens were taken at this time. Laparotomy was performed a year later. The right ovary and tube were freed from adhesions and the left ovary was removed. The histology of the left ovary showed no clinically relevant abnormality. Subsequently, normal ovum uptake was observed and pregnancy resulted from normal fertilisation were made. A total hysterectomy and right salpingo-oophorectomy was done in 1990.
Use of whole mount sections for reporting mammographic specimens.

D J Cooper and M Sutcliffe

J Clin Pathol 1991 44: 524
doi: 10.1136/jcp.44.6.524-b

Updated information and services can be found at:
http://jcp.bmj.com/content/44/6/524.2.citation

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/