Extracting, storing, and transporting whole blood DNA under tropical conditions

I Bates, G Bedu-Addo, T R Rutherford

Abstract
A simple and robust technique for the extraction of DNA under tropical field conditions is described. It requires minimal equipment and is based on lysing cells in whole blood and precipitating the nuclei containing the DNA by centrifugation. The DNA solution can be stored in guanidinium buffer for many months without being refrigerated. Further purification of the DNA can then be carried out in a laboratory with facilities for ultracentrifugation by banding the DNA through cesium chloride. This method yields DNA of sufficient quality and purity for Southern blotting and probing and alleviates the need to transport whole blood between different countries and laboratories.

The application of DNA analysis to the study of tropical diseases is difficult because of problems with blood transportation and storage, or DNA extraction under field conditions. We have developed a simple, reliable method of extracting DNA from whole blood which can be carried out in a small hospital laboratory. DNA is obtained in a form suitable for storage without refrigeration at ambient tropical temperatures for many months.

Methods and results
At least 5 ml anticoagulated blood are mixed with 50 ml cell lysis buffer (figure). Nuclei are isolated by centrifugation at 2500 rpm for 10 minutes and the supernatant discarded. The nuclear pellet is vigorously resuspended in the last drop of liquid and mixed with 1–2 ml nuclear lysis buffer (figure). The DNA solution is transferred to a 2 ml tube and can be stored in this form for many months at ambient temperatures before purification in the United Kingdom.

Further purification is achieved by layering the nuclear lysate over a 3 ml pad of 1 g/ml cesium chloride in 0·1 M EDTA and centrifuging at 32 000 rpm for 16 hours. The DNA band is removed with a wide bore pipette and extensively dialysed against 10 mM TRIS 1 mM EDTA (pH 7·5) (1 × TE) to remove traces of guanidinium and cesium chloride.

The level of degradation of the DNA was assessed by electrophoresing 0·5 μg DNA through an agarose gel and observing the size of the DNA after staining with ethidium bromide. In most samples only DNA of large molecular weight is present. A few samples contain small amounts of low molecular weight DNA, shown by smearing on the gel, and are therefore slightly degraded. Nevertheless, even in samples which exhibit some degradation the DNA is sufficiently pure to permit endonuclease digestion with enzymes, such as Hind III, Bam HI, providing 1–4 mM spermidine are added to the manufacturer’s recommended buffers. The samples can be Southern blotted and reproducible restriction fragments are seen for each sample when probed for the heavy chain region of the immunoglobulin gene.

Constituents of buffers

<table>
<thead>
<tr>
<th>Cell lysis buffer</th>
<th>3 ml 1 M TRIS (pH 7·5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32·9 g sucrose</td>
<td></td>
</tr>
<tr>
<td>1·5 ml 1 M magnesium chloride</td>
<td></td>
</tr>
<tr>
<td>3 ml Triton X-100</td>
<td></td>
</tr>
<tr>
<td>Water to 300 ml</td>
<td></td>
</tr>
</tbody>
</table>

This can be made up at 10 times stock strength, omitting the sucrose, and reconstituted in the field laboratory with water and domestic sugar to reduce the volume of reagents transported between laboratories.

<table>
<thead>
<tr>
<th>Nuclear lysis buffer</th>
<th>50 g guanidinium thiocyanate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0·5 g sodium-N-lauryl sarcosinate</td>
<td></td>
</tr>
<tr>
<td>2·5 ml 1 M sodium citrate (pH 7·0)</td>
<td></td>
</tr>
<tr>
<td>0·7 ml 2-mercaptoethanol</td>
<td></td>
</tr>
<tr>
<td>Water to 100 ml</td>
<td></td>
</tr>
</tbody>
</table>

We have used this method to extract and purify DNA from 22 20 ml blood samples from Ghanian patients with a variety of haematological disorders including chronic leukemias. An average of 680 μg DNA was obtained from each sample (range 13–324 μg), the largest yields coming from leukaemic patients. Eighty per cent of samples yielded over 30 μg DNA, and even in samples containing less DNA, there was adequate material for 1–3 Southern blots. Specimens took 1·5–8·5 months (average 3·8) to reach our United Kingdom laboratory during which time they
Use of leucocyte alkaline phosphatase (LAP) score in differentiating malignant from benign paraproteinaemias

G Majumdar, M Hunt, A K Singh

Abstract
The leucocyte alkaline phosphatase (LAP) score of peripheral blood neutrophils was examined in 20 patients with multiple myeloma and compared with the score in 18 patients with monoclonal gammopathy of undetermined significance (MGUS). The mean (95% confidence limit) LAP score in those with multiple myeloma was 186 (169–218) compared with 92 (64–120) in the MGUS group. In the multiple myeloma group all but one patient had a high LAP score, irrespective of disease. No cause for raised LAP, such as infection, was present in any of the patients with multiple myeloma. In the MGUS group six patients had a raised LAP score; in two of them another cause for such a rise was present (autoimmune haemolytic anaemia and primary thrombocytopenia). In neither group did the LAP score correlate with duration of the disease, bone marrow plasma cell count, paraprotein concentration, haemoglobin, total white cell or neutrophil count.

It is concluded that a normal LAP count in patients with paraproteinaemia suggests a benign condition, but a raised count does not indicate a malignant condition.

Monoclonal gammopathy is a common disorder, especially in the elderly, but only a small percentage of these patients have overt multiple myeloma or related conditions at the time of diagnosis. The rest are diagnosed as having MGUS and usually followed up for an indefinite period as a significant proportion of them progress to multiple myeloma and related malignant disorders.

Methods
Twenty patients (11 men, nine women, mean age 67 years) with multiple myeloma diagnosed by the standard criteria were included in this study. Four were newly diagnosed, 11 were in the plateau phase and five were in relapse. The MGUS group comprised 18 patients (10 men, eight women, mean age 63 years) with paraproteinaemia who did not fulfil the diagnostic criteria for multiple myeloma and were followed up for at least 24 months without any change in disease course. None in either group had a raised white cell count at the time of the present investigation. Blood films were made at the time of routine follow up and were stained for LAP by using a commercial kit (Diagnostica Merck). Scoring...
Extracting, storing, and transporting whole blood DNA under tropical conditions.

I Bates, G Bedu-Addo and T R Rutherford

doi: 10.1136/jcp.44.7.605

Updated information and services can be found at:
http://jcp.bmj.com/content/44/7/605

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/