Isolation and identification of Listeria monocytogenes

K G Kerr, R W Lacey

Introduction
The incidence of human listeriosis continues to increase. The causative organism, Listeria monocytogenes, is responsible for a variety of clinical syndromes in several high risk groups. Infection in pregnant women commonly causes a benign self limiting flu-like illness in the mother, but may ultimately result in abortion, stillbirth, or the birth of a live child with signs of neonatal listeriosis at birth or within the first few days of life. Somewhat analogous to β haemolytic group B streptococcus, a late onset form of neonatal listeriosis has also been identified. In non-pregnant adults and in juveniles many studies indicate that disease of the central nervous system, usually meningitis, is the commonest form of the disease, accounting for about two thirds of cases. Primary bacteraemia accounts for roughly 25% of cases and the remainder consists of endocarditis and an ever increasing variety of focal infections. Although commonly considered a disease of the immunosuppressed, up to 30% of adults have no apparent predisposing condition.1

Microbiological and epidemiological evidence from both sporadic and epidemic cases strongly implicates contaminated foodstuffs, such as soft cheese, as the source of the organism. In the investigation of a case of human listeriosis suspect foodstuffs should be examined for the presence of L monocytogenes. This is often impracticable as the incubation period for listeriosis may be as long as five weeks and incriminated foodstuffs are likely to have been eaten or discarded in the interim.

In adult listeriosis blood and cerebrospinal fluid should be cultured. Samples of faeces may also be obtained. Focal infections are reported with increasing frequency and pus, cardiac valve vegetations, corneal scrapings, etc, should be submitted for culture where appropriate. In suspected maternofetal listeriosis blood cultures may be taken from pregnant women with a "flu like" illness. Neonates with sepsis should have blood and cerebrospinal fluid cultures taken. Genital tract secretions and rectal swabs or faeces should be obtained from their mothers. In cases of abortion or stillbirth placental and fetal necropsy samples should be submitted for culture as the typical features of listeriosis may be absent or apparent on both gross inspection and subsequent histological examination. Where possible, food histories are obtained and high risk foodstuffs (such as paté and soft cheese), are cultured and quantitative counts performed.

Transport of specimens
Samples should reach the laboratory as soon as possible. If there is a delay the samples can be refrigerated. Food samples should be conveyed to the laboratory in an ice box or "cool bag", if quantitative counts are to be performed.

Non-cultural examination of specimens
Gram staining of cerebrospinal fluid and specimens from normally sterile sites may suggest a diagnosis of listeriosis. Listeria usually appear as short, Gram positive rods which may be seen both intra-and extracellularly. Sometimes it may be difficult to distinguish listeria from coryneforms and streptococci in Gram smears. It should be noted that results of cytological and biochemical analysis of cerebrospinal fluid in listeria meningitis may not suggest a pyogenic meningitic process—for example, hypoglycorrachia is not a consistent finding;2 Gram stains of samples likely to be contaminated with other organisms may yield a predominance of short Gram positive rods.

Other methods for the direct detection of Listeria spp include enzyme linked immuno-sorbent assays, fluorescence antibody techniques, and the polymerase chain reaction: these have yet to be fully evaluated and cannot at present be recommended for use in the diagnosis of listeriosis.

Isolation from normally sterile sites
L. monocytogenes is easily isolated from specimens taken from normally sterile sites and
Isolation and identification of Listeria monocytogenes

Isolation from specimens likely to be contaminated with other organisms

Make a 1 in 10 dilution of the specimen in FDA Listeria Enrichment Broth: LEB (Lab M, Bury, Lancs BL9 6AU) and incubate in air at 30°C and subculture on to either Oxford agar (Oxoid, Basingstoke, Hants RG24 0PW; Lab M, Bury, Lancs; Mast Laboratories, Bootle, Merseyside L20 1EA), PALCAM (Oxoid), or LPM agar (Appendix) after 24 and 48 hours' incubation. Incubation may be extended to seven days, but it is uncertain as to whether this increases isolation rates. Treatment of broth samples with 0.5% KOH (1:10 w/v) before plating on to solid media has also been recommended but is probably unnecessary in most instances. For the examination of food-stuffs, 25 g of food is homogenised in 225 ml of LEB in a stomacher and incubated as above. Quantitative counts on selective agar should be performed after homogenisation of the sample. Colonies of Listeria spp and other aesculin hydrolysing organisms on both PALCAM and Oxford agar are surrounded by a black halo. PALCAM agar also contains mannitol and an indicator—phenol red. L. monocytogenes and most other Listeria spp are mannitol non-fermenters; thus black colonies which do not turn the surrounding agar yellow merit further investigation. It should be noted that the complex responsible for the black discolouration of the medium diffuses widely on prolonged incubation at both room temperature and 37°C and plates, thus making it difficult to identify individual aesculin hydrolysing colonies. On LPM, as with other clear isolation media, Listeria spp may be identified by a characteristic blue green appearance of the colonies when viewed by obliquely transmitted light—the Henry technique, as modified by Gray (fig 1). This technique is often deemed as unreliable and difficult to master, but with a little time and effort it should not be beyond the capabilities of most laboratory workers. Some light sources and mirrors may not be suitable for this technique. Gray's original paper contains several colour plates illustrating the typical appearance of L monocytogenes when using oblique transillumination, and is recommended for those who wish to use this technique.

Identification of Listeria spp

Colonies which are aesculin hydrolysing on Oxford agar, aesculin hydrolysing and mannitol non-fermenting on PALCAM, and blue green on LPM on using the Henry technique are subcultured to blood agar for purity and observation of β haemolysis. With foodstuffs more than one Listeria species and more than one serotype of L monocytogenes may be present and several colonies should be picked. It should be noted that the zone of haemolysis surrounding colonies of L monocytogenes and L ivanovii is usually narrow (1-2 mm), and in some instances it may be necessary to remove the colony from the agar for this to be observed. L ivanovii produces a much wider zone of haemolysis on blood agar. Several discrete zones of haemolysis may be observed with this organism. Most cases of human listeriosis are caused by L monocytogenes, but anecdotal reports have implicated the haemolytic species L seeligeri and L ivanovii as causative agents of the disease. Non-haemolytic Listeria spp are non-pathogenic and of little interest to the clinical laboratory. We therefore
Identification of \((\text{haemolytic})\) \(L\) \(isteria\) \(sp^\ast\)

<table>
<thead>
<tr>
<th>Organism</th>
<th>Character of haemolysis</th>
<th>Glucose</th>
<th>Salicin</th>
<th>Mannitol</th>
<th>Acid from:</th>
<th>CAMP test</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L) (monocytogenes)</td>
<td>Narrow zone(\d)</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>xylose</td>
<td>S aureus</td>
</tr>
<tr>
<td>(L) (seeligeri)</td>
<td>Narrow zone</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>rhamnose</td>
<td>+</td>
</tr>
<tr>
<td>(L) (ivanovii)</td>
<td>Wide zone(\d)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>mannitol</td>
<td>(R) equi</td>
</tr>
</tbody>
</table>

\(\ast\) All strains are catalase, VP, aesculin positive, urease negative and motile at 20°C but not at 37°C (see text).

\(\d\) It is essential to identify haemolysis as the non-pathogenic, non-haemolytic \(L\) \(inocua\) is biochemically indistinguishable from \(L\) \(monocytogenes\).

\(\d\) Occasional (\(< 10\%\)) strains may be positive.

\(\d\d\) Positive reactions are weak and may be difficult to identify.

recommended that only haemolytic isolates are examined further. It is essential to identify haemolysis, as the non-pathogenic, non-haemolytic \(L\) \(inocua\) is biochemically indistinguishable from \(L\) \(monocytogenes\).

Colonies of \(L\) \(isteria\) \(sp\) are 0·3–1·5 mm in diameter, are non-pigmented, and reputed to have a sour, buttery smell. Morphology of \(L\) \(isteria\) \(sp\) on Gram staining is variable, but in young cultures the organisms appear as short (0·5 × 1·2 \(\mu\) m) diphtheroid-like Gram positive rods, although larger rods or coccoid forms may be seen. Coccal forms are most likely to be seen on examination of broth cultures or from clinical material. Smears from older cultures, especially broth cultures, may appear Gram negative.

If gram staining is suggestive of \(L\) \(isteria\), perform catalase and oxidase tests. Catalase positive, oxidase negative colonies are assessed for motility. \(L\) \(isteria\) \(sp\) exhibit characteristic "tumbling" motility when examined using a hanging drop technique. It must be emphasised that flagella are not produced at temperatures above 30°C and thus the organisms are non-motile. To assess motility inoculate two brain heart infusion broths and incubate one at 37°C and the other at room temperature. A known \(L\) \(monocytogenes\) isolate must be included as a positive control. Examine both preparations after six and again at 24 hours' incubation. When incubated at room temperature nearly all cells in the culture are motile, whereas at 37°C cells are poorly or non-motile. If large numbers of colonies are to be examined microtitre trays with wells containing broth may be examined with an inverted microscope. Strains which exhibit tumbling motility at 30°C and not at 37°C should be regarded as presumptive \(L\) \(isteria\) \(sp\) and should be submitted to further examination. Tests to confirm identification of an isolate as a \(L\) \(isteria\) \(sp\). are as follows: acetylmethylcarbinol production (Voges-Proskauer test; Bacto MR-VP medium; Difco, East Molesey, Surrey KT8 0SE); fermentation of glucose and salicin (see below); and aesculin hydrolysis (if colonies have been isolated on LPM or other non-aesculin containing media). Bile aesculin medium should not be used as bile salts inhibit the growth of \(L\) \(isteria\) \(sp\). \(L\) \(isteria\) \(sp\) are urease negative.

**Identification of haemolytic \(L\) \(isteria\) \(sp\)**

Identification to species level of these strains depends, at present, on carbohydrate fermenta-

---

AP150CH (API Basingstoke, Hants RG22 6HY). This system consists of 49 substrates including those which are relevant for genus level identification of \(L\) \(isteria\), such as glucose, aesculin, and salicin.\(^6\)

**MAST ID** (Mast Laboratories, Bootle, Merseyside). This uses an agar incorporation technique. When used with a multipoint inoculation system, this method permits the screening of large numbers of strains and is, therefore, particularly useful in the examination of potentially contaminated foodstuffs. It also includes tests useful for identification to genus level, such as aesculin, glucose, salicin, Voges-Proskauer and urease.\(^6\)

**ROSCO** system (Lab M, Bury, UK). Substrates for both species and genus carbohydrate fermentation, in addition to Voges-Proskauer urease and aesculin hydrolysis tests, are available. This system depends on detection of preformed enzymes, thus giving results after four hours' incubation if heavy inocula are used.

**CAMP Test** Originally referring to synergistic haemolysis between \(Streptococcus\) \(agalactiae\) and \(\beta\) haemolysin producing strains of \(S\) \(aureus\), this test has been modified for use in the identification of \(\beta\) haemolytic \(L\) \(isteria\) \(sp\). \(L\) \(ivanovii\) gives a positive reaction with \(Rhodococcus\) (\(Corynebacterium\) \(equi\). \(L\) \(monocytogenes\) and \(L\) \(seeligeri\) are positive with \(S\) \(aureus\), although the latter is often only very weakly positive. In this test a thin (3 mm) layer of sheep blood agar (5% v/v in nutrient or typtose agar) is poured on a nutrient agar base. After drying, either \(S\) \(aureus\) and \(R\) \(equi\) are streaked across the plate and test strains are
Isolation and identification of *Listeria monocytogenes*

Isolation and identification of appropriate controls should not be neglected. However, the mode of contact between *S. agalactiae* and *S. aureus* in the conventional CAMP test is seen. The reaction between *L. seeligeri* and *L. monocytogenes*, however, is less obvious and a blunter, less extensive, zone of haemolysis is noted. Several points must be emphasised with regard to the CAMP test (fig 2). Firstly, only sheep erythrocytes should be used. As some lots may contain inhibitors, cells should be washed twice in phosphate-buffered saline before use. Secondly, when inoculating the sheep blood agar plates, test strains should be streaked so that they are no closer than 1 mm to the organism. The test is not valid if the inocula touch or intersect. Thirdly, known controls of *L. ivanovii* and *L. monocytogenes* should be included on each plate. Finally, not all strains of *S. aureus* are appropriate for use in the CAMP test, and the use of *S. aureus* NCTC 1803 (and NCTC *R equi* 1621) have been recommended.

Carbohydrate fermentation, other biochemical tests and CAMP reactions are summarised in the table.

**Serology**

Isolates identified as *L. monocytogenes* may be further characterised by serotyping. Commercially produced antisera which agglutinate serotypes 1 and 4—the causative agents of most human cases of listeriosis—are available (DFsCo, East Molesey, Surrey). Both slide and tube agglutination techniques can be performed (see manufacturer’s instructions). Agglutination tests should not be performed on isolates which have not been completely characterised because of serological cross-reactions with many other Gram-positive organisms, including haemolytic streptococci.

**Appendix**

LPM agar

- Phenylethanol agar (DFsCo) 35·5 g/l
- Glycine anhydride 10 g/l
- Lithium chloride 5 g/l
- Moxalactam (Sigma, Poole, Dorset) 20 mg/l

BH17 7TG

---
