Differentiation of species in human \( \beta \)-haemolytic group G streptococci using immunoglobulin Fc fragment receptor

N Cimolai, A C H Cheong

Abstract

Aims: To assess the ability of human immunoglobulin Fc fragment binding activity to differentiate human biotype large colony group G streptococci from the group G “Streptococcus milleri group”.

Methods: Fifty two isolates of large colony group G streptococci and 30 group G “S milleri group” strains were tested for their ability to bind fluorescein conjugated human IgG Fc fragments after acetone fixation. Immunoblotting with peroxidase labelled human Fc fragments after resolution of bacterial polypeptides by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed for six large colony strains.

Results: All large colony group G streptococci showed positive Fc fragment binding whereas all “S milleri group” bacteria failed to bind Fc fragments when viewed by fluorescence microscopy. All six large colony strains showed similar immunoblot binding patterns.

Conclusion: Immunoglobulin Fc fragment receptor content distinguishes the large colony group G streptococci from the group G “S milleri group” and may have a role in the rapid laboratory diagnosis of pharyngeal pathogens.

The potential of \( \beta \)-haemolytic Lancefield group G streptococci to cause serious disease is not doubted, but their status in streptococcal taxonomy is less clear. \( \beta \) haemolytic group G streptococci have been differentiated into small and large colony phenotypes.\(^1\) The small colony strains are collectively termed “Streptococcus mitleri group,” synonymous with Streptococcus anginosus, Streptococcus milleri, and “Streptococcus anginosus-milleri group,” although genetic heterogeneity has been suggested.\(^2\) Large colony forms may be biotyped to facilitate recognition of human rather than animal strains.\(^3\) Furthermore, human source large colony group G streptococci are highly related to \( S equisimilis \) (group C) and some group L streptococci.\(^4\)

Lebrun et al initially proposed that immunoglobulin Fc receptors were present in some group C and G streptococci, but subsequently amended their observations for group C streptococci by showing that \( S equisimilis \) rather than group C “S milleri group” had such receptors.\(^5\) This trait served consistently to separate these two subsets of group C streptococci.\(^6\)

Given the similarity of large colony forms of group G streptococci with \( S equisimilis \), and the recognition that some group G streptococci have immunoglobulin binding activity,\(^7\) we sought to determine whether Fc receptor state would differentiate the large from small colony forms of group G streptococci.

Methods

Eighty two strains of \( \beta \)-haemolytic group G streptococcal isolates were obtained from the pharynges of children from 1988 to 1991 inclusive. Fifty two of these isolates were classified as large colony human biotype strains on the basis of a negative rapid Vogues-Proskauer (VP) test, sugar fermentation (lactose, raffinose, sorbitol, trehalose), and aesculin hydrolysis.\(^8\) Thirty group G strains were classified as “S milleri group” based on quality of haemolysis on sheep blood agar (Columbia base), colony size, and a positive rapid VP test. Isolates were stored at \(-70^\circ C\).
Differentiation of species in human β-haemolytic group G streptococci

electrophoretic transfer to nitrocellulose was performed. Transblots were then blocked overnight at 4°C in 1% skimmed milk-PBS. On the following day they were washed in PBS and then incubated with 0.25% gelatin/0.25% Tween 20-PBS for one hour at 37°C. After an additional PBS wash a 1 in 800 dilution of peroxidase labelled-human Fc fragments (Jackson Immunoresearch Laboratories) in PBS was added and incubated at 37°C for one hour. After a final wash 4-chloronaphthol enzyme substrate was used.

Results
The Fc fragment binding assay clearly differentiates among the two large subsets of group G streptococci. All large colony human biotype strains of group G streptococci were positively fluorescent. This implies that these bacteria can uniformly bind human immunoglobulin Fc fragments. In contrast, all group G streptococci of the “S milleri group” lacked the ability to bind Fc fragments. The appearance of fluorescent cells was similar to that described for Fc binding group C streptococci. The presence of fluorescence, and therefore Fc binding, could be established microscopically with scanning at ×100 magnification, and confirmation could be obtained at ×1000 magnification by viewing individual cells.

A random sampling of six large colony strains was used to test Fc fragment immunoblotting. All six strains showed similar binding patterns: Fc-peroxidase was bound to antigens with migration rates that approximate 29 and 55 kilodaltons. We have found similar Fc binding antigens in S equisimilis but not “S milleri group” (group C and G) strains when the bacterial cells have been processed in a similar manner.

Discussion
The ability of some group G streptococci to bind human immunoglobulins is not new. Understanding in the molecular biology of binding specificities and receptors has progressed considerably over the past two decades, and technology transfer has led to the exploitation of these immunoglobulin binding proteins, such as protein G, in a manner analogous to staphylococcal protein A. The approximate molecular weights of these binding proteins as we have defined them by immunoblotting differ from those of some previous reports, but we attribute such differences to the variation in which the binding proteins are extracted and solubilised—for example, various enzymatic hydrolyses, heat treatments, acid treatments. Such variation has led to the demonstration of binding proteins with approximate molecular weights ranging from 38 to 69 kilodaltons. Among the numerous immunoglobulin binding proteins thus far recognised in an array of bacterial species, the Fc-binding proteins common to the group C and group G streptococci have been designated type III Fc receptors. Such receptors are distinguished from other Fc receptors on group G streptococci of animal origin.

The observed homogeneity of Fc binding ability among large colony group G streptococci is another feature that these bacteria have in common with S equisimilis. We have previously shown phenotypic similarity among these bacteria by an assessment of certain enzyme substrate profiles, and Efstratiou has shown the ability of the same organisms to share T type proteins. All of these phenotypic similarities reflect homology which has been previously shown at the genetic level.

Apart from illustrating phenotypic similarity, the finding of Fc fragment binding activity among group G streptococci has the potential to contribute to the rapid laboratory diagnosis of putative pharyngeal pathogens. Although β-haemolytic group C and G streptococci are frequently isolated from both asymptomatic and symptomatic (pharyngitis) subjects, we have proposed an association between the isolation of moderate to heavy quantities of S equisimilis and large colony group G streptococci with symptoms. In contrast, strains with Lancefield group C and G antigens of the “S milleri group” were not associated with disease. An approach to easily and rapidly differentiating these subsets of the β-haemolytic non-group A streptococci in the microbiology service laboratory could then be useful, although the experienced technologist will often be able to differentiate these subsets by visual inspection of subcultures.

Although the rapid VP test has been proposed for rapid differentiation we have found the assay to be more inoculum dependent than β-D-glucuronidase activity determination. The fluorescence Fc fragment binding assay described here has the potential to be even less inoculum dependent than the latter two methods, because in theory even less micro-organism may be required to determine a positive test. A scheme of Lancefield grouping followed by either β-D-glucuronidase conjugate hydrolysis or Fc-FITC binding may then expedite the laboratory diagnosis of an infecting pathogen.

We thank Heidi Luking for assistance.

2 Whiley RA, Hardie JM. DNA-DNA hybridization studies and phenotypic characteristics of strains within the “Streptococcus milleri group”. J Gen Microbiol 1989; 135:2623–33.
8 Reit KJ, Hansen HF, Bjorek L. Extraction and characterization of IgG Fc receptors from group C and group


Differentiation of species in human beta-haemolytic group G streptococci using immunoglobulin Fc fragment receptor.

N Cimolai and A C Cheong

doi: 10.1136/jcp.45.3.232

Updated information and services can be found at:
[http://jcp.bmj.com/content/45/3/232](http://jcp.bmj.com/content/45/3/232)

**Email alerting service**

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

**Notes**

To request permissions go to:
[http://group.bmj.com/group/rights-licensing/permissions](http://group.bmj.com/group/rights-licensing/permissions)

To order reprints go to:
[http://journals.bmj.com/cgi/reprintform](http://journals.bmj.com/cgi/reprintform)

To subscribe to BMJ go to:
[http://group.bmj.com/subscribe/](http://group.bmj.com/subscribe/)