Development of acute leukaemia after idiopathic myelofibrosis

JM Hernández, JF San Miguel, M González, A Orfao, MC Cañizo, C Bascones, J Hernández, A López Borrasca

Abstract

Aims: To determine the characteristics of blast transformation of idiopathic myelofibrosis.

Methods: The clinical and haematological features, as well as the morphological characteristics of blast cells, were analysed in nine adults with blast transformation.

Results: Most of the patients were male and had enlarged spleens and livers. Five of the patients had normal platelet counts, while all had pronounced anaemia and a moderate degree of leucocytosis. The duration of the acute phase was usually short: 16 (SD 8) weeks. Most myeloid cell lineages—granulocytic, monocytic, and megakaryocytic—were similarly distributed. One patient also had a hybrid (lymphoid-myeloid) phenotype. The morphological assessment of blast cells agreed with immunophenotyping in five out of the nine cases. The onset of the blast phase was not related to previous treatment.

Conclusions: A pluripotential stem cell with preferential myeloid commitment would be the target cell of blast transformation in idiopathic myelofibrosis. Our immunophenotypic data do not support the concept of a preferential association between megakaryocytic lineage and the acute transformation of idiopathic myelofibrosis. The absence of previous treatment in some cases suggests that this kind of evolution is part of the natural history of idiopathic myelofibrosis.

Idiopathic myelofibrosis is a clonal myeloproliferative disorder that is characterised by an abnormal deposition of collagen material in bone marrow, extramedullary haematopoesis, splenomegaly, and a leucoerythroblastic blood picture.1-3 The clinical course of the disease is extremely variable, with a median survival from diagnosis of between one and five years.1-5 Between 5% and 20% of patients with primary idiopathic myelofibrosis develop a terminal blast phase.6-8 These acute leukaemias, if following clinically confirmed idiopathic myelofibrosis, should not be confused with a rare syndrome described by Lewis and Szur.9 acute myelofibrosis. This is characterised by the absence of splenomegaly, pancytopenia, hypercellular bone marrow with severe fibrosis, and blast cell infiltration. The blast cells in acute myelofibrosis have frequently been identified as megakaryoblasts, this picture thus being considered by several authors as synonymous with acute megakaryoblastic leukaemia-M7.10-12 Little attention has been paid to analysing the characteristics of the acute leukaemic transformation in idiopathic myelofibrosis.6,7 Moreover, the nature of the blast cells in these leukaemias has usually been studied by conventional morphological and cytochemical techniques,6 and only occasionally by immunophenotypic analysis.13-17 Although most of these reports concern individual cases, they suggest that all cell lineages may be affected: myelomonocytic,6 megakaryocytic,5,13-15 erythroid16 and lymphoid17.

The aim of our study was to analyse the clinical and haematological characteristics of a series of nine patients with leukaemia secondary to idiopathic myelofibrosis, paying special attention to the nature of the blast cells.

Methods

Between 1984 and 1990, nine adult patients in idiopathic myelofibrosis blast transformation were studied at the University Hospital of Salamanca. Chronic idiopathic myelofibrosis was diagnosed from the following criteria: splenomegaly, a leucoerythroblastic blood picture, teardrop poikilocytes on peripheral blood smears, and hypocellular bone marrow with a pronounced fibrosis.9 Other disorders that could have a similar clinical picture as well as cases with concomitant polycythaemia vera were specifically excluded. Diagnosis of acute transformation was based on the presence of more than 30% blast cells in peripheral blood, or bone marrow, or both.18 Complete response was defined as the elimination of blast cells with a return to a chronic phase of idiopathic myelofibrosis both in peripheral blood and bone marrow.

Peripheral blood and bone marrow smears were stained with May-Grünwald-Giems and cytochemical methods for peroxidase, non-specific esterases (naphtol AS-D acetate esterase or α-naphthyl acetate esterase, both with and without sodium fluoride inhibition), periodic acid Schiff and α-naphthyl butyrate esterase.

In all nine patients mononuclear cells were isolated from peripheral blood by Ficoll-Hypaque density gradient centrifugation when acute transformation was diagnosed. The median number of blast cells in the specimens studied was 57% (ranging from 31% to 92%). The cells were analysed by indirect immunofluorescence with a terminal deoxynucleotidyl
transferase (TdT) heteroantiserum (Super-
techs, Bethesda, Maryland, USA), and a panel
of monoclonal antibodies whose reactivity and
specificity have been described previously.19 20
For early myeloid cells the following mono-
clonal antibodies were used: My9 (CD33) and
My7 (CD13); for granulocytic lineage, VIMD5
and FMC10 (CD15); for monocytic lineage,
FMC17 and leuM3 (CD14); for megakaryo-
blasts, J15 (CD41, anti–GP1ib/IIa), C17
(CD61, anti–GP1IIa), FMC25 (CD42a, anti-
GPIX), and AN51 (CD42b, anti–GP Ib); for
erythroid lineage, LICR LON.R10 (anti-
glycoporphin A); for precursor cells, GRB1
(anti–HLA-DR), FMC56 (CD9); and for lym-
phoid lineage, B4 and leu12 (CD19), B1
(CD20), and J5 (CD10).

To minimise non-specific Fc receptor bind-
ing the cells were incubated at room tem-
perature for 15 minutes with AB serum to block
the Fc receptor and washed in a buffer contain-
ing phosphate buffered saline-bovine
serum. Albumin-AB buffer contained
GPIIIa, GPIX, and AN51 (anti–GPIb);
for cytochemistry and immunofluorescence
microscope (Leitz Ortho-
lux) or flow cytometry (FACScan BD,
Mountain View, California, USA). For the assess-
ment of the blast lineage, a minimum of 15% blast
cells were positive for one or more of the specific
monoclonal
antibodies was required.21 22 The
presence of either one or two cell populations
was assessed by appropriate individual dual
stainings, as described previously.23 24

Results
The most relevant clinicobiological features of
acute transformations of idiopathic myelo-
brosis are summarised in table 1. The interval
from the diagnosis of idiopathic myelofibrosis
to the acute phase was usually short (median 20
months). Only four out of nine patients had
been previously treated with alkylating agents,
the duration of the chronic phase in this group
of patients being longer than that of the
remaining five cases (mean 28 (SD 23) v5 (10
months). Most patients were male (78%). The
most frequent clinical findings of acute leu-
kaemia at presentation were systemic symp-
toms (56% of cases) (table 1). All but one
patient had an enlarged spleen and 78% an
enlarged liver. The haematological profile
pointed to a relatively normal platelet count
(>100 £ 10^9/l) in five out of the nine patients;
by contrast, all cases had severe anaemia
(6-8 (2) g/dl). A pronounced bone marrow
infiltration was generally observed, with a
median of 77% blast cells (table 1). Because
of the advanced age of the patients, only four
were treated with aggressive chemotherapy; none
of them achieved complete response. The dura-
tion of the acute phase in the whole series was
16 (8) weeks, ranging from four to 28 weeks
(table 1).

The immunophenotypic distribution of the
ine nine patients studied is shown in table 2. In
one case the blast cells only expressed HLA-DR
antigens, this patient being regarded as a case of
disunified leukaemia. Pure myeloid blast
cell proliferation was identified in five patients:
two of them showed a myeloblastic phenotype
(CD13+/33+; CD15--; CD14--), while in
the remaining three cases the blast cells dis-
played either granulocytic (CD15+) two cases,
or monocytic (CD14+) one case, antigenic
differentiation. The coexistence of two or three
myeloid cell components was detected in two
patients. Finally, one case had a hybrid leu-
kaemia in which monoblasts and megakaryo-
blasts associated together with lympho-
blasts (TdT+, CD19+, CD10+) (table 2).

Because the FAB criteria cannot be applied to
secondary acute leukaemias,26 a descriptive
morphological classification was used. The
blast cells were assigned to one of the following
possible cell lineages: myeloblastic; monocytic;
erthyroid; megakaryocytic; and lymphoid
(table 2). Concordant findings with the
immunophenotype of blast cells were achieved
in five out of the nine cases. The discrepancies
involved: (a) the patient with an undiffere-
tiated phenotype showing Auer rods, who was
therefore classified morphologically as a
myeloblastic leukaemia; (b) the two patients
with a myeloblastic phenotype that were con-
sidered on morphological and cytochemical
grounds to have monocytic differentiation; and
(c) the case of hybrid transformation in which
the morphology identified neither the lym-
phoid nor the megakaryocytic component. It
should be noted that the two cases of mixed
myeloid leukaemias in which megakaryoblasts
were detected (CD61+, CD41+) were recog-
nised morphologically.

Table 1 Clinical and biological characteristics of acute
leukaemia following idiopathic
myelofibrosis

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous chronic phase in months (range)</td>
<td>26 (24) (4-71)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>65 (10) (45-80)</td>
</tr>
<tr>
<td>Sex = male</td>
<td>78%</td>
</tr>
<tr>
<td>Systemic symptoms*</td>
<td>56%</td>
</tr>
<tr>
<td>Anaemic syndrome†</td>
<td>34%</td>
</tr>
<tr>
<td>Bone pain</td>
<td>11%</td>
</tr>
<tr>
<td>Hepatomegaly</td>
<td>78%</td>
</tr>
<tr>
<td>Splenomegaly</td>
<td>89%</td>
</tr>
<tr>
<td>Lymphadenopathies</td>
<td>33%</td>
</tr>
<tr>
<td>Haemoglobin (g/dl)</td>
<td>6-8 (2) (4-9-6)</td>
</tr>
<tr>
<td>White cell count (£ 10^9/l)</td>
<td>26 (17) (5-54)</td>
</tr>
<tr>
<td>Platelets (£ 10^9/l)</td>
<td>101 (99) (10-320)</td>
</tr>
<tr>
<td>Percentage of bone marrow infiltration</td>
<td>77 (17) (55-95)</td>
</tr>
</tbody>
</table>

Results expressed either as means (SD) or percentage of positive cases.

*Systemic symptoms: weight loss, anorexia, and weakness.
†Anaemic syndrome: severe fatigue and exertional dyspnoea.

Table 2 Immunophenotypic and morphological classification of blast transformation
following idiopathic myelofibrosis

<table>
<thead>
<tr>
<th>Immunophenotype</th>
<th>No of patients</th>
<th>Morphology and cytochemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undifferentiated</td>
<td>1</td>
<td>Myeloblastic (M2)</td>
</tr>
<tr>
<td>(HLA – DR +, CD13/33-, CD19-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myeloblastic</td>
<td>2</td>
<td>Myelomonocytic (M4) (1)</td>
</tr>
<tr>
<td>(CD13/33+, CD15-, CD14-)</td>
<td></td>
<td>Myelomonocytic (M4) (1)</td>
</tr>
<tr>
<td>Myeloblastic with maturation</td>
<td>2</td>
<td>Myeloblastic (M2)</td>
</tr>
<tr>
<td>(CD13/33+, CD15+, CD14-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monocytic</td>
<td>1</td>
<td>Monocytic (M5b)</td>
</tr>
<tr>
<td>(CD13/33+, CD15-, CD14+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed myeloid</td>
<td>1</td>
<td>MB/ER/MK</td>
</tr>
<tr>
<td>CD13/33+, CD15+, CD14+, CD19+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD13/33+, CD14+, CD14+, CD41+</td>
<td>1</td>
<td>MB/ER/MK</td>
</tr>
<tr>
<td>Hybrid (myeloid-mono)</td>
<td>1</td>
<td>Myelomonocytic (M4)</td>
</tr>
<tr>
<td>(CD13/33+, CD14+, CD14+, CD19+, CD10+, TdT+)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MB/ER/MK: myeloblastic, erythroid, and megakaryocytic.
Development of acute leukaemia after idiopathic myelofibrosis

Discussion

Several studies have been devoted to analysing the most relevant characteristics of the blast transformation in chronic myelogenous leukaemia. 21 22 26-28 By contrast, few studies on acute transformation of a previous idiopathic myelofibrosis have been published. 23-25 Moreover, only anecdotal cases have been reported concerning the immunophenotypic characteristics of blast cells in these acute leukaemias. 16-22

The clinical features of our patients are consistent with those of the single series of acute leukaemia following idiopathic myelofibrosis, 19 and most of the individual case reports. 5,15 16 29 As in our study, only half the patients had received previous treatment with alkylating agents or radiotherapy, 3,16 suggesting that the evolution into acute leukaemia might be part of the natural history of idiopathic myelofibrosis. Survival in these blast transformations is short; 5,15-16 this is probably due to both the age of the patients and to the actual nature of these leukaemias.

To the best of our knowledge, this is the first series that includes an immunophenotypic analysis of proliferating blast cells in acute leukaemias following idiopathic myelofibrosis, together with their morphological characterisation. Some previous studies, using a morphological and cytochemical approach, have shown that these leukaemias are generally myeloblastic or myelomonocytic, 6 but in some cases reports the existence of megakaryocytic, 13-15 erythroid, 16 or lymphoid 17 transformations has been suspected on morphological grounds, as was the case in our study. Our immunological data confirm that although a typical myeloid phenotype—granulocytic or monocytic—is the one most commonly detected, other cell lineages, such as megakaryocytic, erythroid, and even lymphoid, may also be involved in these leukaemias, leading to the existence of both mixed myeloid and hybrid transformations. Despite the relatively good correlation between the morphological and immunological studies of blast cells, our data suggest that the diagnosis and classification of blast cells in acute leukaemia following idiopathic myelofibrosis is better achieved by a combined morphological, cytochemical, and immunological approach.

Several studies have suggested that the megakaryocyte cell lineage may have an important role in the pathogenesis of idiopathic myelofibrosis. 10 The fact that acute myelofibrosis has been considered synonymous with acute megakaryoblastic leukaemia 10-11 could also suggest a preferential role for megakaryocytic cell lineages in acute leukaemias following previous idiopathic myelofibrosis. Interestingly, megakaryoblastic proliferation was detected in three of our nine cases (33%), this incidence being clearly higher than that found in the de novo acute myeloid leukaemias (11%). 16 However, it should be noted that the prevalence of megakaryoblastic transformation in other myeloproliferative disorders, such as chronic myeloid leukaemia is also high—23% to 51%. 21-22 27 These data would therefore not confirm that there is a special association between idiopathic myelofibrosis in blastic transformation and the megakaryocytic cell lineage. Moreover, the coexistence of several cell lineages, including the lymphoid, would additionally indicate a clonal pluripotent stem cell origin for this disorder.

Supported by Grants from the Fondo de Investigaciones Sanitarias de la Seguridad Social (89/0651-2) and the "Asociación Española contra el Cáncer"
“lymphoid” phenotype and response to chemotherapy incorporating vincristine-prednisolone in the acute phase of Ph"' positive leukemia. Cancer 1979;43:426-34.
Development of acute leukaemia after idiopathic myelofibrosis.

J M Hernández, J F San Miguel, M González, A Orfao, M C Cañizo, C Bascones, J Hernández and A López Borrasca

doi: 10.1136/jcp.45.5.427

Updated information and services can be found at:
http://jcp.bmj.com/content/45/5/427

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/