Adenovirus infection of the large bowel in HIV positive patients

A Maddox, N Francis, J Moss, C Blanshard, B Gazzard

Abstract

Aims: To describe the microscopic appearance of adenovirus infection in the large bowel of human immunodeficiency virus (HIV) positive patients with diarrhoea.

Methods: Large bowel biopsy specimens from 10 HIV positive patients, eight of whom were also infected with other gastrointestinal pathogens, with diarrhoea were examined, together with six small bowel biopsy specimens from the same group of patients. Eight of the patients had AIDS. The biopsy specimens were examined by light microscopy performed on haematoxylin and eosin stained and immunoperoxidase preparations, the latter using a commercially available antibody (Serotec MCA 489). Confirmation was obtained with electron microscopy.

Results: The morphological appearance of cells infected with adenovirus showed characteristic nuclear and cellular changes, although the inflammatory reaction was non-specific. Immunoperoxidase staining for adenovirus was sensitive and specific, and the presence of viral inclusions consistent with adenovirus was confirmed by electron microscopy.

Conclusions: The light microscopic features of adenovirus infection are distinctive and immunocytochemistry with a commercially available antibody is a sensitive and specific means of confirming the diagnosis. Further studies of the role of adenovirus in causing diarrhoea in these patients are indicated.

Diarrhoea and gastrointestinal symptoms are common in HIV positive patients. Almost all patients with AIDS report diarrhoea at some time during the course of their disease. Potentially causative infectious agents are recovered from 49% to 85% of these patients. There is a higher rate of detection in patients with AIDS. The association between symptoms and some of the organisms is unclear.

Adenovirus infection is a known cause of diarrhoea in children. It has also been isolated from HIV positive patients. The first suggestion of an association between adenovirus and diarrhoea or colitis in AIDS was reported in two patients in whom adenovirus was isolated from a culture of biopsy tissue. However, both had histological evidence of cytomegalovirus (CMV) infection, confirmed by electron microscopy and immunocytochemistry.

Recently Janoff et al showed the presence of adenovirus infection of colonic epithelial cells in five HIV positive patients with diarrhoea, two cases of which were confirmed by electron microscopy and two by immunofluorescence of cultured colonic epithelial cells. We now report the histopathological, immunocytochemical, and electron microscopic findings in 10 patients with colonic epithelial adenovirus infection.

Methods

Details of patients and their clinical histories are shown in the table. All were homosexual men and all had mild to moderate proctitis on sigmoidoscopy. Two (cases 3 and 8) had contact bleeding. Nine of 10 had a noticeable reduction in CD4+ cells to less than 55 mm² and eight had other gastrointestinal infections which might cause diarrhoea.

Tissue sections were prepared after standard fixation in neutral buffered formalin and processing to paraffin wax. Sections 4 μm thick were stained with haematoxylin and eosin, periodic acid-Schiff and alcian blue, and examined by light microscopy. Control cases were taken from three HIV positive patients in whom no infection was found, one patient with CMV colitis, four patients with cryptosporidiosis and one patient with graft versus host-like changes in their colorectal biopsy specimens.

Immunocytochemical studies were performed with adenovirus primary antibody (Serotec No MCA 489) at a dilution of 1 in 1000 on all test and control cases. Sections were mounted on poly-l-lysine coated slides, subjected to 15 minutes protease digestion and incubated with primary antibody for one hour. Secondary antibody and avidin-biotin complex were incubated for one hour each and after washing developed with diaminobenzidine for five minutes.

Two other control antibodies were applied to selected test and control sections: primary anti-CMV antibody (Dakopatts) using a previously described method; and primary anti-herpes simplex type 1 antibody (Dakopatts B114 polyclonal) at a dilution of 1 in 100 with incubation and development times as above.

Staining procedures were run with known CMV and herpes simplex positive controls and negative controls of test cases without primary antibody.

Paraffin wax sections were dewaxed, rehydrated to water, postfixed in 2% aqueous osmium tetroxide and then dehydrated in
Clinical histories of patients studied

<table>
<thead>
<tr>
<th>Case No</th>
<th>Age</th>
<th>No</th>
<th>Initial presentation</th>
<th>Pathology</th>
<th>Other gastrointestinal infections (biopsy)</th>
<th>Other gastrointestinal infections (stool)</th>
<th>Treatment</th>
<th>Follow up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32</td>
<td>12</td>
<td>4C1 AIDS 3/12</td>
<td>6-7 × liquid/soft</td>
<td>0</td>
<td>Adenovirus infection of the large bowel</td>
<td>AZT</td>
<td>Ongoing diarrhoea</td>
</tr>
<tr>
<td>2</td>
<td>32</td>
<td>38</td>
<td>4C1 AIDS 5/12</td>
<td>Constricted haematogenous haemorrhage</td>
<td>3</td>
<td>CMV</td>
<td>AZT</td>
<td>Stopped</td>
</tr>
<tr>
<td>3</td>
<td>49</td>
<td>10</td>
<td>4C1 AIDS 4/12</td>
<td>5-6 × stool vol 2L</td>
<td>4</td>
<td>CMV+HPV</td>
<td>Foscarnet</td>
<td>Died</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>54</td>
<td>4C2 ARC 4/12</td>
<td>2-3 × soft</td>
<td>0</td>
<td>Campylobacter</td>
<td>Ciprofloxacin</td>
<td>Resolved</td>
</tr>
<tr>
<td>5</td>
<td>37</td>
<td>46</td>
<td>4C1 AIDS 2/12</td>
<td>6-7 × liquid</td>
<td>4</td>
<td>CMV</td>
<td>Acyclovir</td>
<td>Resolved</td>
</tr>
<tr>
<td>6</td>
<td>42</td>
<td>23</td>
<td>4C1 AIDS 6/12</td>
<td>6-7 × liquid</td>
<td>10</td>
<td>Crypto</td>
<td>AZT</td>
<td>Improved</td>
</tr>
<tr>
<td>7</td>
<td>35</td>
<td>29</td>
<td>4C1 AIDS 1/12</td>
<td>5-8 × soft</td>
<td>3</td>
<td>Micro</td>
<td>AZT</td>
<td>Ongoing diarrhoea</td>
</tr>
<tr>
<td>8</td>
<td>22</td>
<td>976</td>
<td>Asymptomatic 2/12</td>
<td>4-6 × soft/liquid</td>
<td>6</td>
<td>CMV</td>
<td>DDI</td>
<td>Improved after 2/12</td>
</tr>
<tr>
<td>9</td>
<td>36</td>
<td>34</td>
<td>4C1 AIDS 3/12</td>
<td>2-3 × soft</td>
<td>2</td>
<td>Spiro</td>
<td>Acyclovir</td>
<td>Ongoing diarrhoea</td>
</tr>
<tr>
<td>10</td>
<td>49</td>
<td>49</td>
<td>4C2 ARC 7/52</td>
<td>6 × soft/liquid</td>
<td>5</td>
<td>CMV</td>
<td>Foscarnet</td>
<td>Resolved</td>
</tr>
</tbody>
</table>

Key:

Results (table)

LIGHT MICROSCOPY

All but one of the cases were identified as having abnormal cells in the superficial epithelial layer at the time of light microscopic examination. One case was discovered in a patient with graft-versus-host-like changes in the control group after adenovirus antibody immunocytochemical staining, but on review of the haematoxylin and eosin stained sections abnormal cells were recognisable.

The morphology of the infected cells and the associated histological changes in the large bowel mucosa are illustrated in figs 1 and 2. The infected cells were almost always in the surface epithelium or crypt mouth and the nuclei often located immediately adjacent to the basement membrane. In one case we found an infected cell in the base of a crypt. We found no infected endothelial or stromal cells, in ascending grades of ethanol. The tissue was embedded by inverting a capsule of Spurr's resin over the selected area of the section (chosen by light microscopy), and polymerised overnight at 60°C. The embedded material was removed from the glass slide by repeated application of steam and a rod cooled in liquid nitrogen to the underside of the slide. Ultrathin sections were stained with aqueous uranyl acetate and Reynold's lead citrate and then examined by transmission electron microscopy.

![Figure 1: Cell infected with adenovirus with irregular amphophilic nucleus (note basal position) (haematoxylin and eosin).](http://jcp.bmj.com/)

![Figure 2: Six infected cells displaying crescentic nuclei in vacuolated cytoplasm (haematoxylin and eosin).](http://jcp.bmj.com/)
The associated mucosal appearances were rather non-specific and involved a mild to moderate chronic inflammatory infiltrate. Neutrophils were only occasionally present. The epithelium showed some disarray, with an irregular, serrated epithelial surface, nuclear pseudostratification, and blurring of the boundary between epithelial cell base and lamina propria. There was a variable degree of oedema and apoptotic nuclear debris. These changes did not seem to correlate with virus load, which we estimated by counting the number of positive cells in a length of mucosa roughly equal to 20 crypt widths. In our patients this varied from 1 to 160. Patients at either end of this scale had similar epithelial and inflammatory changes. Interestingly, and perhaps not surprisingly, the two patients with the greatest numbers of infected cells had the lowest CD4 counts. In case 1 who had colonoscopic survey with multiple biopsy specimens, the number of infected cells increased with distance from the ileo-caecal valve.

IMMUNOCYTOCHEMISTRY (table)
Optimal protease digestion, antibody dilutions, and incubation times were established using sections from case 1 in which electron microscopy had shown the presence of intranuclear viral particles of 60-80 nm with morphology consistent with adenovirus. The cells with cytopathic changes showed strong blackish-brown nuclear staining with the adenovirus antibody (fig 3), which often delineated individual intranuclear inclusions (fig 4) and revealed cells, particularly with a sickled nuclear morphology, that it would not be possible to ascertain were infected with adenovirus on haematoxylin and eosin staining alone. There was no positive staining in morphologically normal cells and there was no false positive staining of the CMV or herpes control cases. Furthermore, in six patients duodenal biopsy specimens, obtained at the same time as the rectal ones, were consistently negative.

ELECTRON MICROSCOPY
In three cases with relatively few infected cells the cells could not be found after lifting off parts of the paraffin wax sections. In one case (case 1) infected cells were successfully obtained for electron microscopy and showed closely packed intranuclear crystalline arrays of viral particles of a uniform morphology and hexagonal/rectangular pattern, 60-80 nm in size (fig 5). In case 1, with large numbers of infected cells, a greater number showed intranuclear viral particles than were detected by light microscopy. Although the size is marginally smaller than adenovirus in culture or from stool isolates (70-80 nm), the size difference is compatible with shrinkage artefact due to recovery from processed and fixed tissue. The particle size is too large for polyoma (40-50 nm) or parvovirus (30-45 nm), and too small for cytomegalovirus.
Adenovirus infection of the large bowel in HIV positive patients

Figure 5 Electron micrograph showing intranuclear viral particles and (inset) regular pattern of arrangement. Bar = 5 μm, inset bar = 200 nm; L = lumen.

Discussion

Diarrhoea is a common and debilitating problem in patients infected with HIV, particularly those who have AIDS. The organisms commonly found include cryptosporidia, microsporidia, salmonella, Mycobacterium avium intracellulare (MAI) and cytomegalovirus (CMV). The role of adenovirus as an enteric pathogen in HIV is uncertain, although it has been implicated in fatal hepatic infection in HIV and in other immunodeficiency states. It is known to be associated with a frequently fatal gastroenteritis in bone marrow transplant recipients and is a common cause of respiratory tract infections and gastroenteritis in otherwise healthy children. In these groups with gastroenteritis adenovirus types 40 and 41 (subgenus F) are the usual isolates.

Adenovirus can be isolated from many patients with HIV disease and some of the earliest reports of AIDS mentioned this. Many different types are found, urine isolates often being those of subgenus B, while stool isolates are mainly subgenus D. Several workers have investigated the problem of diarrhoea in HIV disease to determine the proportion of patients in whom pathogens are found and to characterise these pathogens. Some have included adenovirus in their assessment. Of those that have not, Connolly et al found an infective cause in 33% of patients with AIDS related complex and 87% of patients with AIDS with non-cryptosporidial diarrhoea investigated as inpatients. Together with positive cryptosporidia cases reported separately, this represents 77 (72%) of a consecutive series of 107 patients with diarrhoea. Similarly, Smith et al found an infective pathogen in 17 of 20 (85%) patients with AIDS with diarrhoea.
on histological and microbiological investigation.

By contrast, Rolsten et al found 38% of HIV patients had an identifiable intestinal pathogen. Intestinal biopsy specimens showed non-specific inflammation. Dryden et al examined 441 stool samples from 179 consecutive HIV positive patients with diarrhea. An infective aetiology was found in 49% of patients.

The percentage of patients with AIDS and diarrhea in whom an infective cause is not found thus ranges from 15% to 51%. These differences may be due to several factors, including the type and frequency of sampling, the pathogen sought, local variations in individual pathogens, or other unknown causes. A recent prospective study found 30% of HIV positive patients with diarrhea had no identifiable infective cause.

Of those investigators who have tested for adenovirus in studies of diarrhea in HIV disease, some have found no correlation. Laughon et al, using ELISA tests on stool samples, found no cases of adenovirus in 49 patients with AIDS. While Kaljot et al, using similar techniques, found four of 77 patients secreting adenovirus in their stool. In contrast, Cunningham et al, using electron microscopy and culture on one or more stool samples, investigated 68 symptomatic HIV positive patients with diarrhea and recovered adenovirus from 18. The morphology of intestinal adenovirus infection is poorly described. The largest affected group are otherwise healthy children, when the site of infection is the small bowel and therefore infrequently biopsied. Reports of intestinal adenovirus infection in immunocompromised patients, however, point to the large bowel as the site of infection. Recently, Janoff et al have described the morphology of large bowel adenovirus infection in five of 67 homosexual HIV positive patients with diarrhea, 51 of whom had AIDS. Adenovirus was identified by transmission electron microscopy or culture of the biopsy specimen with subsequent immunofluorescence. In retrospect, three of the patients at light microscopy were found to have inclusions in colonic epithelial cells which are similar to those which have been described here.

The light microscopic appearances of colonic cells infected with adenovirus are distinctive and can be appreciated at low power. In particular, the basal position of the often vacuolated cells is helpful and can alert one to a more detailed examination of the nuclear morphology. Furthermore, we have shown that a commercially available monoclonal antibody will react with infected cells in formalin fixed, paraffin wax embedded tissue and has a high degree of sensitivity and specificity.

The pathogenic role of adenovirus is still uncertain. In contrast to Janoff, 80% of our patients had another recognised enteric pathogen. All were severely immunocompromised and susceptible to a range of infections. Under these circumstances it is difficult to elicit the relative contribution, if any, of any one of a set of potential pathogens. However, the epithelial damage and disarray in areas containing cells infected with adenovirus demonstrates a cytopathic effect and therefore a possible pathogenic role on histological grounds.

We thank Pina Sannino for immunocytochemistry work, Ron Barnett for photography, and Ian Shore for electron microscopy.

Adenovirus infection of the large bowel in HIV positive patients.

A Maddox, N Francis, J Moss, C Blanshard and B Gazzard

doi: 10.1136/jcp.45.8.684

Updated information and services can be found at:
http://jcp.bmj.com/content/45/8/684

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/