Tenascin immunoreactivity in normal and pathological bone marrow

Y Soini, D Kamel, M Apaja-Sarkkinen, I Virtanen, V-P Lehto

Abstract

Aims: To determine the distribution of tenascin in normal and pathological bone marrow.

Methods: 48 different bone marrow lesions were studied immunohistochemically using a monoclonal antibody to tenascin.

Results: Tenascin immunoreactivity was found in lesions with increased fibrosis and high numbers of reticular fibres. The strongest immunoreactivity was found in myelofibrosis. Bone marrow from acute and chronic myeloid and lymphatic leukaemias showed weak or moderate immunoreactivity. In hyperplasias inconsistent reticular tenascin immunoreactivity was found; in normal bone marrow, only a few scattered positive fibres were occasionally seen.

Conclusions: Tenascin was generally observed in conditions in which megakaryocytic hyperplasia was a feature. This is in line with the notion that tenascin synthesis in bone marrow fibroblasts is stimulated by TGF-β which is synthesised by the megakaryocytic lineage. Tenascin also contains EGF-like repeats. It might therefore function as a growth promoter and in this way could also stimulate synthesis of other matrix components. On the other hand, tenascin could function as an adhesive molecule to some cells of the bone marrow. The presence of tenascin in many pathological states of the bone marrow suggests that it may have a role in their pathogenesis and that it also could be a potential marker of disease.

(J Clin Pathol 1993;46:218–221)

Tenascin is an extracellular matrix protein which was originally isolated from embryonic tissues. It is also present in adult tissues in smooth muscle cells, endothelial cells, myotendineous tissue, cartilage and in healing wounds. Tenascin is synthesised by fibroblasts and glial cells. It is a hexameric molecule with a total molecular weight of 1900 kilodaltons. There are three isoforms of the molecule with molecular weights of 190, 200, and 230 kilodaltons and a variable tissue distribution. Tenascin contains epidermal growth factor-like and fibronectin-like repeats. Because of the epidermal growth factor-like repeats, it has been suggested that tenascin has growth promoting properties.

Tenascin has been found in the stroma of various tumours, especially malignant ones. In tumour tissue it is thought to be synthesised by stromal fibroblasts that are induced by cytokines, especially TGF-β. Synthesis of tenascin has also been reported in embryonic bronchial epithelial cells, in chondroblasts, smooth muscle cells, and in some other mesenchymal cells. Moreover, intracytoplasmic tenascin immunoreactivity has been detected in malignant melanomas and in lung carcinomas.

In haematolymphoid tissues the distribution of tenascin has been studied in lymph nodes and in spleen, but there are no reports on the distribution of tenascin in bone marrow tissue. In splenic tissue tenascin immunoreactivity is closely associated with the reticular fibres. Similarly, in reactive and neoplastic lymph node tissue (except for the nodular sclerosing variant of Hodgkin’s lymphoma) tenascin was seen as a reticular network, similar to that detected by the reticulin stain. In the nodular sclerosing variant of Hodgkin’s lymphoma the entire fibrotic stromal tissue stains strongly for tenascin.

In a previous study we introduced a novel monoclonal tenascin antibody (143DB7): this functions in formalin fixed and paraffin wax embedded material. The antibody recognises all three isoforms of tenascin. Using this antibody, we have now examined the distribution of tenascin in 48 bone marrow biopsy specimens to elucidate the role of tenascin in a variety of different neoplastic and reactive conditions of the bone marrow.

Methods

The material consisted of eight cases of myelofibrosis (three primary, five secondary), six chronic myeloid leukaemias, one acute myeloid leukaemia, 13 hyperplastic bone marrows (five myeloid, three megakaryocytic, two erythroid, two diffuse, one megakaryocytic and erythroid), seven normal bone marrows, four aplasias, three chronic lymphatic leukaemias, two acute lymphatic leukaemias, one hypoplastic bone marrow, one non-specific fibrosis, one atypical lymphatic infiltrate and one metastatic adenocarcinoma. The material was collected from the files of the Department of Pathology, Oulu University Hospital, between 1980-1984. The diagnosis of the cases was based on a light microscopic evaluation of the slides stained with haematoxylin and eosin, periodic acid Schiff, Gomori’s reticulin stain, the Giemsa and Herovici stains. Bone marrow...
Results of immunohistochemical staining

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Number of positive cases/total number of cases</th>
<th>Quantification of immunoreactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myelofibrosis</td>
<td>8/8</td>
<td>+++/+++/+++/+++</td>
</tr>
<tr>
<td>Chronic myeloid leukaemia</td>
<td>4/6</td>
<td>+/+/+/+/+/+</td>
</tr>
<tr>
<td>Acute myeloid leukaemia</td>
<td>0/1</td>
<td>-</td>
</tr>
<tr>
<td>Chronic lymphatic leukaemia</td>
<td>3/3</td>
<td>+/+</td>
</tr>
<tr>
<td>Acute lymphatic leukaemia</td>
<td>2/2</td>
<td>+</td>
</tr>
<tr>
<td>Hyperplasia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myeloid</td>
<td>2/5</td>
<td>+/+/-/+/+/-</td>
</tr>
<tr>
<td>Megakaryocytic</td>
<td>3/3</td>
<td>++++/+(e)</td>
</tr>
<tr>
<td>Erythroid</td>
<td>0/2</td>
<td>-/-</td>
</tr>
<tr>
<td>Erythroid and megakaryocytic</td>
<td>1/1</td>
<td>+</td>
</tr>
<tr>
<td>Diffuse</td>
<td>2/2</td>
<td>+(e)</td>
</tr>
<tr>
<td>Normal</td>
<td>2/7</td>
<td>+/+/+/+/-/+/-</td>
</tr>
<tr>
<td>Aplasia and hypoplasia</td>
<td>0/5</td>
<td>-/-/-</td>
</tr>
<tr>
<td>Fibrosis</td>
<td>1/1</td>
<td>+</td>
</tr>
<tr>
<td>Metastasis</td>
<td>1/1</td>
<td>+</td>
</tr>
<tr>
<td>Arytchaloid lymphoid infiltrate</td>
<td>1/1</td>
<td>+</td>
</tr>
</tbody>
</table>

- negative
(+o) occasional positive fibres
++ moderately positive
+++ strongly positive.

biopsy specimens from the iliac crest were decalcified in EDTA for 36 hours and fixed in 10% buffered formalin and embedded in paraffin wax. Case histories of all the patients and their additional bone marrow biopsy specimens were reviewed and re-examined.

IMMUNOHISTOCHEMICAL STAINING

Sections (5μm) were dewaxed in xylene and rehydrated in graded alcohol. The endogenous peroxidase was blocked by treating with 0.3% hydrogen peroxide in absolute methanol for 30 minutes. Before immunostaining, the sections were treated with 0.4% pepsin (Merck, Darmstadt) at 37°C for 30 minutes. The avidin-biotin complex (ABC) method was used for immunostaining.

Monoclonal mouse antibody to human tenasin (143DB7) was used as the primary antibody. The sections were incubated with the primary antibody at 4°C overnight, followed by the biotinylated rabbit anti-mouse antibody and ABC (Dakopatts, Glostrup, Denmark). The colour was developed with diaminobenzidine, after which the sections were mounted in an aqueous medium. The sections were counterstained with a light haematoxylin stain.

Negative controls consisted of substituting phosphate buffered saline (140 ml NaCl, 0.01M phosphate buffer, pH 7.2) and normal mouse serum for the primary antibody.

The staining reaction was evaluated quantitatively as follows: -- negative; (+) occasional positive fibres; + weak reactivity; ++ moderate reactivity; and +++ strong reactivity.

Results

The results are summarised in the table.

Tenasin was found in all bone marrow samples with increased fibrosis or increased amount of reticular fibres. The strongest immunoreactivity was observed in the cases with myelofibrosis; in most cases the immunoreactivity was very strong (fig 1), with only three cases showing moderate or weak staining. In fibrotic areas the staining was linear; in the more cellular areas it was mainly reticular. The staining pattern was similar to that obtained by reticulin staining of the same biopsy specimens. Immunoreactivity was also found in the walls of the dilated sinusoids.

Tenasin immunoreactivity could also be seen in all samples from acute and chronic lymphatic leukaemias. The reactivity was, however, weaker than in myelofibrosis. The staining pattern was reticular. Similar immunoreactivity was also seen in the positive cases of myeloid leukaemias.

Inconsistent reticular staining was seen in the hyperplastic bone marrow. Positive staining was observed in cases with myeloid or megakaryocytic hyperplasia (fig 2), while in erythroid hyperplasia there was no tenasin immunoreactivity.

In normal bone marrow staining was mostly negative. In some cases, however, a few positive fibres could be seen. In the bone trabeculae positivity could be seen in the periosteal region and in osteocytes (fig 3). The walls of the blood vessels also stained positive.

No tenasin could be observed in the aplastic bone marrow. In cases with fibrosis, metastatic adenocarcinoma, and atypical lymphoid infiltrate weak tenasin immunoreactivity was observed.

There was no clear correlation between the progression of myelofibrosis or leukaemias and tenasin immunoreactivity (data not shown). No difference was observed in tenasin immunoreactivity between the primary and secondary myelofibrosis.

Discussion

The occurrence of tenasin in bone marrow correlated with the presence of reticular fibres and fibrosis, thus displaying a pattern of expression similar to that found in lymphatic tissues and neoplasias. Normal lymph nodes and splenic tissue displayed only a faint tenas-
In bone marrow type III procollagen immunoreactivity closely resembles that of reticulin staining. In myelofibrosis, the fibrous tissue also strongly stains for type III procollagen while laminin and type IV immunoreactivity can only be seen in the walls of the blood vessels and sinusoidal structures. As tenascin follows the reticular staining pattern, its distribution is similar to that of type III procollagen. There are, however, no reports of any association between these two molecules. On the other hand, it is known that tenasin may be attached to fibronectin. Interestingly, there is also a pronounced stromal deposition of fibronectin in myelofibrosis.

The variability in tenasin immunoreactivity between different disease states of the bone marrow points to the fact that tenasin might have a role in their pathogenesis. It is known that tenasin contains EGF-like repeats. As pointed out earlier, EGF have been implicated in the pathogenesis of bone marrow fibrosis. Tenasin could therefore stimulate the fibrogenesis in bone marrow. Moreover, tenascin, via its EGF-like properties, might function as a growth promoting substance. In fact, it has been shown that EGF, along with several other growth stimulating substances, is capable of stimulating the proliferation of fibroblastic colony forming units in the bone marrow. On the other hand, tenasin may function as an adhesive molecule to the cells of the bone marrow.

In normal bone marrow occasional tenasin positive fibres could be found, indicating that low amounts of tenasin are present in the reticular backbone of the marrow. In the bone tissue tenasin was seen in osteocytes and in the periosteum. Similar immunoreactivity in bone tissue has been reported earlier and this also served as an internal positive control for the staining. No positivity was found in aplastic bone marrows which suggests that the matrix framework of the bone marrow is lost in aplasia.

In summary, the occurrence of tenasin in various pathological conditions of the bone marrow makes it a putative marker of disease. It could also be used as an adjunct in the diagnosis and follow up of myelofibrosis, as has been suggested for some other extracellular matrix proteins, such as laminin and type IV collagen. Derived protein fragments of these have been found in patients' serum. To date, however, there are no serum markers for tenasin.

This study was supported by the Finnish Anti-Tuberculosis Association, the Finnish Medical Research Council, the Finnish Cancer Research Fund, and the Sigrid Juselius Foundation.

4 Chuong C-M, Crossin KL, Edelman GM. Sequential
Tenascin immunoreactivity in normal and pathological bone marrow

Tenascin immunoreactivity in normal and pathological bone marrow.

Y Soini, D Kamel, M Apaja-Sarkkinen, I Virtanen and V P Lehto

doi: 10.1136/jcp.46.3.218

Updated information and services can be found at:
http://jcp.bmj.com/content/46/3/218

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/