It is interesting to note that one of the early reports of small intestinal disease in Waldenström’s macroglobulinaemia describes a patient who also had abnormal coagulation tests, probably false positive syphilis serology, and who sustained a cerebral artery thrombosis one year after diagnosis of Waldenström’s macroglobulinaemia. Two other reports of intestinal Waldenström’s macroglobulinaemia also noted abnormal coagulation and false positive syphilis serology, and in the second of these phospholipid was found in association with the extracellular immunoglobulin in the small intestinal lymphatics. Unfortunately, most reports of lymphoma associated paraproteins with lupus anticoagulant activity or phospholipid specificity do not document extent or localisation of disease. Cooper et al., however, described such a case in which gastrointestinal symptoms were prominent.

This case highlights the potential importance of the antigen specificity, usually unknown, of monoclonal paraproteins and also the ever present, though poorly understood, paradoxical risk of thrombosis associated with lupus anticoagulant. It leads us to suggest the possibility of a link between lymphoproliferative disorders secreting phospholipid specific immunoglobulin and a tendency to affect the lymphatics draining the small bowel. The mechanism behind this is unclear but we speculate that this might relate to an association between antigen specificity and recirculation patterns of the abnormal lymphoid clone. The high phospholipid antigen load to which gut associated lymphoid tissue is exposed would increase the chances of a lymphoproliferative disorder arising here and having some degree of phospholipid specificity. Alternatively, lymphomas with phospholipid specificity arising elsewhere may localise in the lymphatic draining system of the small bowel due to a high content of the antigen in these areas.

We thank Dr KJ Stevenson at the UK Reference Laboratory for Anticoagulant Reagents and Control, Withington Hospital, Manchester, for the kind donation and preparation of the various phospholipid preparations.

Terminal subculture of blood cultures using a multipoint inoculator device

K J Thickett, D J W Dabbs, R C Spencer

Abstract
A multipoint inoculation method was used for the terminal subculture of blood cultures. This economical yet reliable technique successfully isolated important human pathogens such as Haemophilus influenzae from macroscopically negative blood cultures.

Detection of bacteraemia is one of the most important functions of a clinical microbiology laboratory and accounts for a large part of laboratory workload. Traditional blood culture systems, involving enrichment broths and visual inspection of bottles, are usually supplemented with subcultures on to agar at various intervals. An early subculture (less than 24 hours) and a terminal subculture are usually recommended.1 The time consuming nature of subculture, together with the low yield of clinically important organisms and the relatively large number of agar plates required, has led some workers to conclude that terminal subculture of blood cultures may not be necessary.2,3 It has been shown, however, that in many blood culture systems important human pathogens such as Haemophilus influenzae and Neisseria meningitidis produce no macroscopic signs of growth.4 In an effort to resolve these problems and to make the process of terminal subcultures more economical we used a multipoint inoculation method.

Department of Bacteriology, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF
K J Thickett
D J W Dabbs
R C Spencer

Accepted for publication 20 January 1993
Methods

A total of 20 ml of blood was collected from each patient and 10 ml inoculated into both 100 ml fastidious anaerobe broth (Lab M) and 100 ml Hartley's digest broth (Oxoid) with 0-1% added glucose. Cultures were incubated at 37°C and observed twice daily for signs of growth. Subcultures were performed from the fastidious anaerobe broth after 24 hours using conventional techniques. Cultures were incubated for three days at which time they had terminal subcultures using a multipoint inoculator device. Any cultures with appropriate clinical details (e.g. bacterial endocarditis, fungi, HIV positive, brucellosis) had terminal subcultures done after seven days or longer.

Terminal subcultures were performed using a hand operated multipoint inoculator (Don Whitley Ltd) fitted with a 36 pin head which delivered 0:001 ml of fluid. Sterile plastic cupules were placed into each well of a 36-well PTFE block, and using a sterile plastic pipette about 0:5 ml of agitated blood culture broth was placed into a cupule. The position of each cupule was noted on a template. Thirty five broths can be accommodated on the block, one of the places being taken by a marker pin. The multipoint pins were sterilised by immersion in alcohol and then flame. The broths were inoculated onto the following agars:

1. Columbia heated blood agar (Oxoid) with 5% horse blood.
2. Columbia agar (Oxoid) supplemented with 5% horse blood.
3. Fastidious anaerobe agar (Lab M) supplemented with 5% horse blood and 10 mg/l nalidixic acid (Pro lab diagnostics).
4. Mycoplasma ureaplasma differential (MUD) agar.1
5. Sabouroud's agar (Oxoid) supplemented with 50 mg/l chloramphenicol (Parke Davies).
6. Listeria selective agar (Oxoid).
7. Deoxyribonuclease agar (Oxoid).
8. MacConkey agar (Oxoid).

All plates were incubated for 48 hours at 37°C in air plus 6% CO₂ except Columbia blood agar, fastidious anaerobe agar, and MUD agar which were incubated in anaerobic conditions and Sabouroud's agar which was incubated in air at 30°C.

Discussion

This method is considerably cheaper than conventional subculture methods for blood cultures, both in terms of media used and staff time. The range of media which can be economically used is much wider and therefore more likely to recover a wider range of organisms, although this depends ultimately on the culture broths being able to support the growth of such organisms. With the exception of MUD agar, all plates have proved useful for the rapid recognition of organisms, although it is quite possible that fewer plates could achieve the same results. The method is very flexible as different media can easily be added as required. Mixed cultures present little problem as the range of both selective and differential agars makes them easy to detect. Spreading Proteus spp presented no problem as these organisms were always positive before terminal subculture.

Terminal subculture of blood cultures using a multipoint inoculator device.

K J Thickett, D J Dabbs and R C Spencer

doi: 10.1136/jcp.46.7.680

Updated information and services can be found at:
http://jcp.bmj.com/content/46/7/680

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/