

Dr Allardyce and Mr Bagshaw comment: We agree with Henrik von Wulfen and Thier Marx that the clinical trials should be undertaken with caution and in the light of all relevant in vitro and in vivo experimental evidence. It is also true that the publications on H pylori are littered with in vitro antibiotic data (including our own) that may be misleading in clinical outcome to the in vivo antibiotic functional efficacy in vivo. There are, however, a number of points regarding results obtained using AHA as a function of H pylori. First, we have shown that AHA can be cytotoxic in vitro. First, the results from Hamburg do not include dose or time response data. The synergistic antimicrobial effects reported by us were obtained using up to 10-fold less AHA. Also, the mean effects of continuous 48 hour exposure of HeLa cells to H pylori sonicate fractions and AHA in culture are not accompanied by any indication of the variability of the observation or the length of the time required for any damage to become irreparable. The issues of dose and timing are germane to the clinical finding that a single 750 mg dose of AHA inhibits H pylori urease in infected patients by 86%. Second, there is a question relating to the practicality of the in vitro model using H pylori sonicates on HeLa cells as opposed to intact organisms on gastric epithelial cells (preferably mucus secreting) and the absence of control sonicate sephacryl fractions from organisms other than H pylori.

In the end, the clinical value of including urease inhibitors will rest on the balance between therapeutic efficacy and undesirable side effects. Such treatments, such as our own and those of von Wulfen and Marquardt, have some value by indicating general therapeutic directions and constraints. But that is all they can do. At present, what is needed is in vivo Helicobacter infection model experiments aimed at finding the most efficient means of eradicating H pylori at the least cost to the wellbeing of the host.

H VON WULFEN
T MARQUARDT
Institut für Medizinische Mikrobiologie und Immunologie, Universitätskrankenhaus Eppendorf, 20 146 Hamburg, Germany.

Alternative method for transporting and storing gastric biopsy cultures of helicobacter pylori

Veennendal et al reported the use of sterile saline as a transport medium for gastric biopsy specimens in order to obtain adequate culture results for Helicobacter pylori. Indeed, sterile saline is a simple and useful transport medium. Gastric biopsy specimens can, however, be put directly on to the surface of a suitable agar plate, thus eliminating the need for a needle, if necessary. The plate is subsequently stored in the freezer at 4°C until it is transferred to the microbiology laboratory. In our experience over 10 months, the biopsies stored on agar plates in sterile saline are suitable for culture for at least seven days at 4°C (from seven to 14 days), and for at least 25 hours at room temperature (from 25 to 28 hours). Samples can therefore be collected, even from distant endoscopy units once or twice a week.

According to Veennendal et al, one antral biopsy specimen is adequate for culture. In our experience this holds true except in patients with previous omeprazole treatment where there is a strong reduction of parietal cells. In these circumstances H pylori may be present only in the oxyntic mucosa. This may be due to the change in antral pH from acidic to neutral, leading to a local excration of acid still present in the fundic area may permit H pylori survival in this zone. A false negative culture of a single antral specimen may also be due to an extensive intestinal metaplasia of the antral mucosa.

SAVIO Microbiology and Gastrointestinal Pathology Unit, S Orsola Fatebenefratelli Hospital, 25100 Brescia, Italy

Drs samples, for Dr Savio processing, a low to the an in H pylori require test to coided moment results for In about previous in inhibition Nomina PCR being sent to phials of of patients.

Although we are surprised and impressed by the long delay without loss of viability of the culture method described by Dr Savio, we feel that this method is more tailored to a situation in which facilities (refrigeration, culture media, a microbiology laboratory) are present in the same institution. In our experience, contamination of culture plates in an endoscopy department does occur and can be a problem (especially with yeasts) when culturing a fastidious organism like H pylori.

The second comment addresses the important point of how to detect or better exclude the presence of H pylori after treatment with drugs (omeprazole, bismuth, and several antibiotics) which influence the number and viability of the bacterium (coc coa). As methods for detecting H pylori require a certain number of viable bacteria (histology, culture, and breath tests) to detect the bacterium, false negative test results are bound to occur after treatment. This problem is probably not solved by taking more specimens, and is at this moment the subject of further investigation.

In previously untreated patients we found (unpublished data) no positive culture results for H pylori from the gastric body when the gastric antrum was also not infected. In about 20% of our patients no inflammation or infection can be demonstrated in the gastric body region, which does not support the notion of additional body biopsy specimen for routine culture in previously untreated patients.

Clinical usefulness of detecting growth of Mycobacterium tuberculosis in positive Bactec phials using PCR

It has recently been shown that the polymerase chain reaction (PCR) can confirm growth of Mycobacterium tuberculosis in Bactec bottles to five days earlier than the use of DNA probes and seven to 10 days before presumptive identification by the Nomina Anatomica Parisiensia (NAP) growth inhibition test.1 It has been suggested that a prospective evaluation of these methods is required.1 We have investigated the PCR method to see if the earlier results provided would be of help in patient management.

Bactec 12B Phials are tested each morning. Those with a growth index between 20 and 50 are then read daily until the growth index falls or reaches 50, at which time a smear is made and a subculture performed. The smear and subculture plates are read the following day with updated reports being sent to the clinician when acid fast bacilli are detected. Confirmed or presumptive identity is reported as soon as colony morphology, NAP inhibition, or DNA probe results allow. We do not use smear morphology of positive phials to generate preliminary reports to physicians.6

For the three months March 1993 to May 1993, we cultured fluid from all Bactec phials with a growth index of ≥ 20. The aliquots were stored in centrifuge tubes at $-70^\circ C$. For PCR, the aliquot was thawed and spun at 12,000 rpm for 10 minutes. The pellet was resuspended in 100 μl of a 10% chexel and 1% triton solution, soni cated for 15 minutes, and heated sequenti ally for 15 minutes each at 50°C and 95°C. Debris was pelleted at 12,000 rpm for two minutes. Supernatant fluid was used for PCR according to previ ously published methods.7 The PCR takes several hours to perform, after which it takes 90 minutes to run the gel. If PCR results from positive trials were clinically useful, we thought it might be possible to organise workflow so that the PCR result from a positive phial would be available the afternoon the phial became positive. We therefore calculated the advantage for using PCR as if the PCR result was available the afternoon the phial became positive.

Aliquots were stored from 247 phials: 24 contained M tuberculosis; 48 contained other mycobacteria; 3 other bacteria only; and 87 were sterile. The 24 specimens containing M tuberculosis came from 10 patients. Fifteen of the 24 (72%) original specimens containing M tuberculosis were smear positive at initial culture. Of these 10 patients had specimens with positive smears. Aliquots from 86 phials were subjected to PCR: all 24 containing M tuberculosis, none of which contained bacteria; all 48 containing other mycobacteria, seven of which contained bacteria; and 14 which did not contain mycobacteria, 10 of which contained bacteria. All phials containing M tuberculosis were correctly identified, with a growth index between 266-238, range: 21-99) including 12 phials with a growth index of <100, three of which were smear negative. It took an average of 16 days, range 6-45 days, for the phials containing M tuberculosis to reach a positive growth index. Recovery of M tuberculosis could have been confirmed by PCR five days (range one to 13) before presumptive or confirmed growth of M tuberculosis was made by other methods. No Bactec PCR results were observed among the other 62 phials analysed. Although multiple bands were observed on the gel from one phial containing M chelonae, no band was positive on specific probe.

The clinical utility of the PCR result was assessed by examining the medical records of all 10 patients infected with M tuberculosis to determine whether the result would have enabled earlier treatment or aided in infection control measures. Nine of the 10 patients were already receiving treatment for 17 days (range three to 50) before the Bactec phial became positive. All five patients with specimens with positive smears were either receiving treatment at the time or started treatment when the smear result became positive. Four patients with smear negative specimens were already in receipt of treatment by the time the Bactec phial became positive. Only one patient with a smear negative, culture positive sputum specimen, who was discharged the same day the phial became positive, may have benefited from the PCR result. As it was, this patient was referred for specific treatment initiated on receipt of the phial smear result. While PCR of positive phials would have had no clinical impact, a positive PCR result on the original specimen would have been of benefit to two of the five smear negative patients: they would have had treatment 10 to 13 days earlier.

PCR is beginning to be compared with contemporary culture methods in large scale studies.6 The sensitivity is high for smear positive specimens, but is consider ably lower for smear negative ones—94% \pm 62%, respectively.2 Although this type of evaluation is a useful first step, we should not be mislead into believing that it is necessarily going to improve dramatically clinical management. For most smear positive patients, the result may not change what is done. It would be most useful for smear negative patients if the result led to earlier treatment, but even in this situation, as shown in this study, many patients are appropriately being given treatment based on clinical and family history, physical and radiological findings. We commend the work of Cormican et al that this methodology requires prospective evaluation against contemporary diagnostic methods.7 Such compar isons should take into account technologist time and workflow benefit for the mycobacteriology laboratory.

Correspondence

Drs Veenaadla and Lichtenhel-Bernards comment:

Dr Savio raises two points. The first is an alternative method of transportation, pro cessing, and storage of gastric biopsy cultures for H pylori. In our article we describe a low budget method of transporting gastric biopsy samples, without the need for refrig eration or a specialised transport medium, to a laboratory facility capable of culturing H pylori.

Mario Lichtendorf-Bernards comment: We read with interest the comments of Morris and colleagues on the use of PCR to confirm the presence of Mycobacterium tuberculosis in positive Bactec phials and are pleased that they confirm the essence of our original report. We agree with the authors that there are two issues to consider in relation to the use of PCR based methods in the clinical laboratory.

In relation to clinical practice, we agree that the savings in time achieved by PCR relative to conventional methods may be expected to benefit a relatively small group of patients with tuberculosis in whom there is an urgent need for diagnosis and real clini cal uncertainty following application of conventional methods. The benefit to

Alternative method for transporting and storing gastric biopsy cultures of Helicobacter pylori.
A Savio

J Clin Pathol 1994 47: 189-190
doi: 10.1136/jcp.47.2.189

Updated information and services can be found at:
http://jcp.bmj.com/content/47/2/189.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/