Correspondence

Quantitative audit of the content of histopathology reports

Drs Campbell and Griffiths give an account of how histopathology reports can be produced at a uniformly high standard that is a tribute to the working practice in their department.1 In laboratories in which computer systems permit the use of "canned text", the initiative could be extended and consolidated by the provision of template reports with variable sections which can be deleted.

To take the example used to illustrate Campbell and Griffiths' paper, a template as a starting point for the reporting of a bladder biopsy specimen containing invasive transitional cell carcinoma might be as follows:

Clinical history

Macrosopic

This specimen consists of solid / friable fragments of grey tissue measuring up to *mm and totalling *ml, *mg.

Microscopic

These are fragments of a well / moderately / poorly differentiated, transitional cell carcinoma of bladder showing a solid / papillary / inverted growth pattern. There is evidence of invasion of the submucosa and muscle coat in our of *fragments.

There is no adjacent flat urothelial present. / The adjacent flat urothelial present shows in situ malignant / dysplastic change which increases the risk of recurrence or further tumours.

Invasive transitional cell carcinoma of bladder (grade 1 / 2 / 3, stage 1b / 2 / at least)

SNOMED CODES

T74000 URINARY BLADDER

M81203 CARCINOMA, TRANSITIONAL CELL.

The content of the template report is that agreed to by the pathologist and specimen type and would be based on the guidelines described by Campbell and Griffiths. Asterisks and slashes are used to indicate where a mandatory addition or deletion should be made. Clearly the pathologist must have the option of adding to or deleting from the template. He or she will, however, be confident that they have not omitted an important part of the report.

We have used this approach for nearly three years; a directory of over 4000 standard reports covering much of general histopathology and cytology has been developed. These are recalled using intuitive file names such as "BLTCC4" for the above report) or text indexing and retrieval software. As we can generate appropriate and complete reports bearing accurate SNOMED codes without the delay of an office transcription stage, the mean reporting time has been reduced from 3.9 days to 2.63 days (based on audit of 600 case-mixed specimens). The quality of our reports has been enhanced. Because the diagnostic criteria for rarer diagnoses are included in the template, there is also the potential for greater diagnostic accuracy, as the pathologists have to read and agree to these criteria when he or she edits the template. Our coverage of some diagnostic areas is relatively comprehensive. Therefore, the use of standard histopathological terms or an immunohistochemical profile as key words to search the directory will select the report giving the correct diagnosis or a series of reports representing a differential diagnosis. We therefore have the beginnings of a "textert" system.

Pathologists who believe that every report must be individually crafted without such aids or who never intend to use a computer will not take to do this idea. However, those who cooperate to standardise their service, like Drs Campbell and Griffiths and their colleagues, might like to consider how "canned text" could be used to improve or at least standardise histopathology and cytology reports. Clearly the work required to develop such tools need not be duplicated in every laboratory. Pathologists who consider themselves to have a special interest in any sector of diagnostic histopathology or cytology and who would like to contribute to our report template project are invited to contact the author.

SB COGHLIN

Department of Cellular Pathology, Northampton General, Northampton NN1 5BD

Estimation of haemoglobin concentrations using spectrophotometric tests

Dr Goodrick and colleagues recently reported a patient with a monoclonic IgM paraprotein whose haemoglobin estimations were spuriously raised. This was apparently due to interference with the spectrophotometric analytical method by the formation of an optically dense precipitate of plasma and the Coulter lysing agent.1 A similar mechanism has been shown in some of the occasional reports of pseudohyposphaerocytosis in patients with monoclonal gammopathies, including Waldenström's macroglobulinaemia.1 Lipaemia is also recognised to confound the estimation of phosphate by spectro-photometric techniques,3 as happens with haemoglobin.

Tokmajian and colleagues reported a patient with an IgM κ monoclonal gammapathy with spurious hypoglycaemia and hyphophaeratemia.4 These phenomena were eventually shown to be due to excessive sample blankings in the automated clinical analyser due to precipitation of IgM monoclonal protein in distilled water which was used as the serum diluent

Instrument printouts also showed a haemolysis "flag" despite the absence of visible haemolysis or turbidity. In the same way that this patient's spurious hypophataemia resulted from a reversal of the mechanism underlying most cases of pseudohyphaeratemia,5 so the spurious haemolysis was probably the converse of the phenomenon described by Goodrick and colleagues.

These findings suggest that particular care should be exercised when assessing any laboratory variable influenced by haemolysis or turbidity. In the same way that these pseudohemolysis and pseudohypophataemia tests in patients with monoclonal gammapathies. Lah and colleagues, for instance, found unsuspected pseudohyphaeratemia in 11 of 41 patients with multiple myeloma.6 Without the clinical acumen shown by Goodrick and colleagues, many similar but less pronounced examples of these phenomena might have been inadvertently overlooked.

J LARNER

Department of Anatomy, University College, Downing Street, Cambridge CB2 3DY

Capnocytophaga canimorsus in peripheral blood smears

Fife et al suggest that the initial morphology and staining characteristics of organisms seen in the peripheral blood film of septicaemic patients may be useful for provisional identification and also in the choice of initial treatment. The following two points are relevant to the discussion.

Firstly, the possibility of microbial contamination of staining reagents, slide or full blood count container, must be borne in mind. And where findings would be considered unusual in the particular clinical setting, due caution in interpretation should be observed.

Secondly, the authors did not mention Capnocytophaga canimorsus (dysgonic ferment type 2) septicemia, in which Gram staining of peripheral blood is of confirmed worth. C canimorsus septicemia is particularly associated with patients whose spleens have been removed, following animal bites.
Quantitative audit of the content of histopathology reports.

S B Coghill

doi: 10.1136/jcp.47.7.681-a

Updated information and services can be found at:
http://jcp.bmj.com/content/47/7/681.1.citation

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Errata

An erratum has been published regarding this article. Please see next page or:
/content/47/9/870.3.full.pdf

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/
brief descriptions of geographical distribution, morphology, and life cycle.

Section 2 contains over 250 colour photographs covering a wide range of parasite morphology, pathology (including stained sections), and clinical pictures with captions on the facing page. Although the overall quality of the photographs is excellent, I was disappointed to see a lack of size markers on all but a handful. In the clinical laboratory size is of vital importance for identifying ova and cysts.

The third section contains black and white electron micrographs, radiographs, and other illustrations, separated from the colour section for reasons of economy. This does not detract from the atlas in any way, and indeed some of the scanning electron microscopic images are quite breathtaking. I would, however, like to have seen some indication of size on the photographs.

This atlas has a spacious and orderly feel to it, and I am impressed by the overall quality. Clinical microbiologists, particularly those in training, will find it useful.

AJ HAY

This sumptuously produced atlas is subdivided into two main sections with three chapters devoted to "clinical aspects" and seven chapters allocated to "pathology". This is satisfactory in a multi-author text, but it has resulted in a clinical section which is pathologically naive and a pathological section impoverished by the paucity of clinicopathological correlation.

The wide-ranging introductory chapter, which covers epidemiology, genetics, molecular biology, early diagnosis, and screening for ovarian cancer, provides a useful overview of the subject, although the emphasis placed on ultrasonography is excessive. The two ensuing chapters, both rather lengthy and repetitive, are devoted to management of ovarian carcinoma and non-epithelial tumours, respectively.

The pathology section comprises four chapters devoted to primary epithelial neoplasms including a whole chapter on the interesting but controversial subject of ovarian intraepithelial neoplasia. Other chapters deal with sex cord-stromal tumours, germ cell tumours, and metastatic tumours. This section is well illustrated with adequate photomicrographs and gross photographs of excellent quality. However, many entities are skimpily and uncritically described with no attempt to evaluate the taxonomic over-enthusiasm displayed by recent authors in this field. On the other hand, many rare but well established entities are not included. An even more serious drawback for a book aimed at the practising histopathologist is the lack of consideration given to possible differential diagnoses.

In conclusion, this new atlas is unlikely to fulfil the need for a comprehensive, authoritative, and up to date reference text on ovarian neoplasms. It cannot be recommended as a bench book for the reporting room.

SM ISMAIL

Postgraduate course: Current concepts in surgical pathology
November 14–18 1994
Massachusetts General Hospital,
Harvard Medical School

This course is designed for pathologists at resident and practitioner levels. It will provide an in-depth review of diagnostic surgical pathology with emphasis on morphological features, newly recognized entities, and new techniques, presented by the faculty of the Department of Pathology, Massachusetts General Hospital. Instruction will be primarily by lecture, but will also include discussion periods. Each participant will receive a comprehensive course syllabus.

The course has category 1 accreditation for about 35 hours CME credit by the American Medical Association. The fee for the course is $785/00 (residents and fellows $575/00).

For further information contact: Department of Continuing Education, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115 USA (Tel: 0101 (617) 432 1525).

Update on Cerebrovascular Pathology
Thursday 8 December 1994 (one-day) to be held at The Royal College of Pathologists, 2 Carlton House Terrace, London SW1Y 5AF.

The meeting is open to members and non-members of the College. Further details and application forms can be obtained from the Scientific Meetings Officer, RCPath, 2 Carlton House Terrace, London SW1Y 5AF (Tel: 071 930 5862 ext: 24/26).

Cytophathy for histopathologists
Northwick Park Hospital
30 January–3 February 1995

This is an intensive course in cytopathology suitable for candidates preparing for the MRCPath examination in histopathology, and for established histopathologists requiring revision. It is given by the Department of Cellular Pathology, Northwick Park Hospital (Dr Elizabeth A Hudson) and the Department of Cytophathy, St Mary’s Hospital Medical School, University of London (Professor Dulcie Coleman).

The programme will consist of lectures, microscopy sessions, and discussions. Topics will include cytopathology of the cervix, urine, the respiratory tract, serous effusions and fine needle aspiration cytology of breast and other sites. The course is limited to 30 participants.

The course fee is £300 excluding accommodation.

Applications and enquiries should be made to: Dr Elizabeth Hudson, Department of Cellular Pathology, Northwick Park Hospital, Harrow, Middlesex HA1 3UJ (Tel: 081–869 3312).

Corrections

J Clin Pathol 1994;47:205–8; Tillyer et al. The title of the correspondence should read "zinc protoporphyrin assays in patients with a and β thalassaemia trait." The title at present implies that zinc assays were performed which was not the case.

In paragraph 2, the second sentence should read "... not only were the drugs causing substantial interference extremely unlikely in the outpatient and general practice population we studied...". Paragraph 3 second sentence should read "...Paul and Brumfitt's is 15 μmol/mol haem lower." DR ML TILLYER

The name of the author was given incorrectly as J Larner rather than AJ Larner.

ANDREW J LARNER

J Clin Pathol 1993;46:1116–9. (Darjee R, Gibb AP. Serological Investigation into the association between Streptococcus bovis and colonic cancer.) The methods section refers to "NCTC10449 (Enterococcus fecalis), but this should read ATCC19433 (Enterococcus fecalis). NCTC10449 is in fact the reference number of the type strain of S mutans. AP GIBB

Increased pentane and carbon disulfide in the breath of patients with schizophrenia. J Clin Pathol 1993;46:864–8. The concentrations of pentane and carbon disulfide were reported incorrectly. All values of pentane should be multiplied × 50; all values of carbon disulfide × 0·05. The statistical analyses and conclusions of the paper are not affected by these corrections.

MICHAIL PHILLIPS

CHIA-MING CHU