c-erbB-2 overexpression in the dysplasia/carcinoma sequence of Barrett’s oesophagus

R H Hardwick, N A Shepherd, M Moorghen, P V Newcomb, D Alderson

Abstract

Aims—To investigate overexpression of the oncoprotein c-erbB-2 in the dysplasia/carcinoma sequence of Barrett’s columnar-lined oesophagus (CLO).

Methods—Immunohistochemical staining was performed using the monoclonal antibody NCL-CB-11 on formalin fixed tissue from 31 cases of Barrett’s carcinoma, 20 cases of cancer associated dysplastic CLO, seven cases of dysplastic CLO without cancer, and 20 cases of non-dysplastic CLO. Membranous staining was regarded as positive for c-erbB-2 overexpression; cytoplasmic staining was recorded separately as its significance is uncertain.

Results—Membranous c-erbB-2 overexpression was observed in eight of 31 (26%) carcinomas and in none of the cases of dysplastic CLO. Variable cytoplasmic staining was seen in four of 31 (13%) tumours and seven of 27 (26%) cases of dysplastic CLO. No staining was observed in non-dysplastic CLO.

Conclusions—C-erbB-2 overexpression is a relatively late event in the development of some Barrett’s carcinomas and is unlikely to be involved in the early stages of neoplastic transformation of CLO.

Keywords: Barrett’s oesophagus, adenocarcinoma, c-erbB-2.
Table 1 NCL-CB-11 immunoreactivity in Barrett's oesophagus

<table>
<thead>
<tr>
<th>Immunoreactivity</th>
<th>Barrett's adenocarcinoma</th>
<th>Cancer associated dysplastic CLO</th>
<th>Dysplastic CLO without cancer</th>
<th>Non-dysplastic CLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membranous</td>
<td>8</td>
<td>3 HGD</td>
<td>0 HGD&LGD</td>
<td>0</td>
</tr>
<tr>
<td>Cytoplasmic</td>
<td>4</td>
<td>1 HGD</td>
<td><10%</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>19</td>
<td>2 LGD</td>
<td>1 LGD</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>31</td>
<td>15</td>
<td>5</td>
<td>20</td>
</tr>
</tbody>
</table>

HGD = high grade dysplasia; LGD = low grade dysplasia.

IMMUNOHISTOCHEMISTRY

Formalin fixed, paraffin wax embedded tissue sections (5 μm) were cut and dewaxed in Histoclear (Cell Path, Hemel Hempstead, UK) before rehydration in graded alcohols. Sections were treated with 3% hydrogen peroxide in water for five minutes before being washed in TRIS buffered saline (TBS). Normal rabbit serum (Dako, High Wycombe, UK) was applied at a dilution of 1 in 5 for 20 minutes to block non-specific antigens and the monoclonal antibody NCL-CB-11 (Novacastra, Newcastle upon Tyne, UK), diluted 1 in 40, was applied for one hour at room temperature. After washing in TBS, biotinylated rabbit antimouse antibody (Dako), diluted 1 in 500, was applied for 30 minutes. Further washing in TBS was followed by the application of avidin-biotin complex (Dako) for 30 minutes before a final TBS wash and visualisation of bound antibody with 3,3’-diaminobenzene (0.6 mg/ml) for 10 minutes. A light haematoxylin counterstain was applied before dehydration in graded alcohols. Positive and negative controls were stained with each batch of slides, comprising c-erbB-2 overexpressing breast tissue processed with and without the primary antibody.

Staining was reviewed independently on two separate occasions by two of the authors (RHH and PVN) and a semiquantitative assessment of membranous staining made. Sections were considered to overexpress c-erbB-2 if at least 10% of cells showed unequivocal membranous staining. Staining intensity varied slightly between batches and no formal assessment was attempted. Cytoplasmic staining was recorded separately and not considered to be positive for c-erbB-2 overexpression.

Results

Eight of 31 (26%) carcinomas showed membranous c-erbB-2 overexpression (table 1). Figure 1 shows an example of widespread membranous c-erbB-2 overexpression in biopsy material from a Barrett’s carcinoma. When present, heterogeneous membranous staining was typically observed in at least 50% of cells. Of these c-erbB-2 positive tumours, differentiation was good in one, moderate in five, and poor in two. Four of the eight c-erbB-2 positive tumours had areas of associated dysplastic CLO (two with high grade dysplasia, one with low grade dysplasia, one with high and low grade dysplasia); none of these demonstrated membranous c-erbB-2 staining. No membranous staining was seen in any cancer associated dysplastic CLO. One area of high...
c-erbB-2 overexpression in the dysplasia/carcinoma sequence of Barrett’s oesophagus

grade dysplasia adjacent to a c-erbB-2 positive tumour, however, did show cytoplasmic staining. Four tumours showed cytoplasmic staining, two of which had adjacent dysplastic CLO (one with high and one with low grade dysplasia); both of these also showed cytoplasmic staining (fig 2). Of the remaining cases of cancer associated dysplastic CLO, two (one with high and one with low grade dysplasia) showed cytoplasmic c-erbB-2 over-expression. Table 2 summarises the association between NCL-CB-11 staining of Barrett’s carcinomas and cancer associated dysplastic CLO.

DYSPLASTIC AND NON-DYSPLASTIC CLO
None of the seven patients with dysplastic CLO without cancer showed membranous c-erbB-2 overexpression. One had less than 10% focal staining in both the low and high grade dysplasia and another had widespread cytoplasmic staining in low grade dysplasia. The latter patient had biopsy specimens taken two years before and one year after those showing cytoplasmic staining; both of these contained low grade dysplasia but lacked cytoplasmic or membranous NCL-CB-11 staining. None of the biopsy specimens from 20 patients with non-dysplastic CLO without cancer showed membranous or cytoplasmic staining.

INTER- AND INTRAOBSERVER VARIATION
To quantitate interobserver variation, initial scores given to each of 100 consecutive sections by the two observers were compared. Four slides were scored differently, giving an interobserver variation of 4%. Each observer reviewed the first 50 slides twice to assess intraobserver variation. The first observer changed the score of two slides and the second of one slide, giving an intraobserver variation of 4% and 2%, respectively.

Discussion
The prevalence of c-erbB-2 overexpression in this group of patients with Barrett’s adenocarcinoma was 26% (eight of 33), higher than the 11% (seven of 66) reported by Flejou et al25 but considerably lower than the 73% (11 of 15) and 60% (six of 10) found by Jankowski et al25 and Al-Kasspooles et al,23 respectively. As in the study by Flejou et al,25 no membranous overexpression was seen in this study in dysplastic or non-dysplastic CLO. This is in contrast to Jankowski et al,24 who found weak membranous c-erbB-2 expression in 60% (nine of 15) of cases of CLO (one with “mild dysplasia”), and Al-Kasspooles et al,23 who demonstrated “moderate overexpression” in three cases of non-dysplastic CLO, but not in a fourth “dysplastic” case. The most likely explanations for these differences are the greater sensitivity of c-erbB-2 detection in frozen tissue compared with fixed archival material22 and perhaps the greater concentration of primary antibody used24 (1 in 5 v 1 in 20 in this study). C-erbB-2 expression in CLO is not unexpected as this receptor is widely expressed by other epithelial cells of the gastrointestinal tract.11 The crucial question is whether the increased sensitivity of immunohistochemistry on frozen tissue results in the detection of pathological levels of c-erbB-2 immunoreactivity (that is, overexpression), or simply demonstrates physiological levels of the receptor in these tissues. Paradoxically, studies of c-erbB-2 immunoreactivity on fixed rather than frozen tissue may actually give a more accurate representation of pathological receptor overexpression because of their higher threshold for positivity. If this is true, the lack of membranous c-erbB-2 immunoreactivity in dysplastic CLO in this and the study by Flejou et al25 suggests that c-erbB-2 overexpression is unlikely to be involved in the early stages of neoplastic transformation of CLO. To answer this question definitively, however, c-erbB-2 protein concentrations must be quantified in dysplastic and non-dysplastic CLO. This cannot be achieved using immunohistochemistry.

Similar observations concerning c-erbB-2 expression in dysplasia have been made in other tissues. Kamel et al,20 studying gall bladder carcinoma, found c-erbB-2 overexpression in 10% of tumours, but not in adjacent dysplastic mucosa. In bladder, Al-Kasspooles et al16 found no c-erbB-2 immunoreactivity in areas of high grade dysplasia or carcinoma in situ. D’Emilia et al21 have studied c-erbB-2 expression in the adenoma/carcinoma sequence of the colon, a system that might be expected to share some similarities with the dysplasia/carcinoma sequence of Barrett’s oesophagus. They found membranous immunoreactivity in 20% of colon carcinomas, 62% of adenomas, and in non-neoplastic mucosa adjacent to tumours and adenomas.

There is uncertainty as to the significance of cytoplasmic c-erbB-2 staining. An immunoreactive cytoplasmic protein with a molecular weight of 155 kilodaltons (20 kilodaltons smaller than c-erbB-2) has been identified, but it is unclear whether this is a c-erbB-2 precursor molecule15 or a mitochondrial membrane protein.32 Ohguri et al33 found only an 185 kilodalton immunoreactive protein in the cytoplasm of gastric cancer cells, suggesting that c-erbB-2 itself can be found in this location. Immunoblotting studies in bladder cancer have shown an association in some tumours between overexpression of both the 185 and 155 kilodalton proteins and c-erbB-2 gene amplification.31 In view of the uncertain significance of cytoplasmic c-erbB-2 immunoreactivity, we have scored only membranous staining as representative of c-erbB-2 overexpression. If, however, cytoplasmic staining was to be included in the c-erbB-2 positive group, the number of positive tumours would rise from 26 to 39% and only three of these would have c-erbB-2 positive dysplastic CLO associated with them. This would not, therefore, fundamentally change the overall conclusions of this study.

Although c-erbB-2 overexpression appears to have no potential as a marker in dysplastic CLO, it may identify patients with Barrett’s adenocarcinoma who have a particularly aggressive tumour.26 In gastric carcinoma the
prognostic significance of c-erbB-2 expression is less certain. In breast cancer it has been known for some time that c-erbB-2 is an independent marker of poor prognosis.

In conclusion, membranous c-erbB-2 overexpression was found in eight of 31 Barrett's adenocarcinomas, but in none of 27 areas of dysplastic CLO, 20 of which were associated with Barrett's carcinoma. When present, c-erbB-2 overexpression appears to be a late event in the dysplasia/carcinoma sequence of Barrett's oesophagus, although further confirmation of this observation is needed in light of the discrepancies between studies using frozen versus fixed tissue. Unlike p53, which is overexpressed in CLO associated high grade dysplasia, and which may have prognostic significance, c-erbB-2 does not appear to have any potential role in identifying patients at risk of developing oesophageal carcinoma.

The authors are grateful to MWL Gear, SP Wilkinson, and CP Armstrong for their assistance with this study. RH Hardwick is supported by the Carey Coombs Research Fellowship.

c-erbB-2 overexpression in the dysplasia/carcinoma sequence of Barrett’s oesophagus.

R H Hardwick, N A Shepherd, M Moorghen, P V Newcomb and D Alderson

doi: 10.1136/jcp.48.2.129

Updated information and services can be found at:
http://jcp.bmj.com/content/48/2/129

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/