Transforming growth factor β1 messenger RNA in Reed–Sternberg cells in nodular sclerosing Hodgkin’s disease

S R Newcom, L Gu

Abstract

Aims—To determine the cellular origin of the most potent cytokine present in Hodgkin’s disease, transforming growth factor (TGF) β, the polyclonal population of Hodgkin’s tissue was studied using in situ hybridisation.

Methods—A biotin labelled oligo-complementary DNA (cDNA) was constructed according to the previously determined sequence for TGFβ1 cDNA. Forty three frozen and paraffin wax embedded tissue samples replaced by Hodgkin’s disease or non-Hodgkin’s lymphoma, three Reed–Sternberg cell lines, one Ki1 positive lymphoma cell line, and an epithelial cell line were studied for expression of TGFβ1 messenger RNA (mRNA) as well as secretion of the TGFβ1 protein and expression of the CD30 epitope.

Results—The results obtained with the 24 frozen tissue samples confirmed that the TGFβ antigen is found predominantly in the nodular sclerosing Hodgkin’s disease (NSHD) subtype. Nineteen paraffin wax embedded tissue samples were used to measure the simultaneous expression of CD30 and TGFβ1 mRNA. The latter was found in eight of eight NSHD samples, two of six mixed cellularity samples, and two of five non-Hodgkin’s lymphoma samples. No evidence of fibroblast expression of TGFβ1 mRNA was noted.

Conclusions—Activated lymphocytes in NSHD express TGFβ1 mRNA, but binucleate Reed–Sternberg cells and mononuclear Hodgkin’s cells are the primary sources of activated TGFβ in Hodgkin’s disease.

Keywords: Hodgkin’s disease, TGFβ1, in situ hybridisation.

Reed–Sternberg cells produce many cytokines in vitro. Of these, transforming growth factor (TGF) β has been studied and also shown to be present in an activated, stainable form in primary tissue and the urine of patients with active disease. The cellular source of this activated TGFβ is in vivo has been questioned. Eosinophils have been proposed as the predominant source.

This study evaluates the origin of this bifunctional cytokine. The polyclonal population of Hodgkin’s tissue was studied using in situ hybridisation with simultaneous staining of growth factor antigen and the Ki1 (CD30) antigen. Primary tissue samples replaced by Hodgkin’s disease and controls were studied. The results obtained confirmed that TGFβ antigen is found predominantly in the nodular sclerosing Hodgkin’s disease (NSHD) subtype. Although activated lymphocytes in NSHD express TGFβ1 mRNA, binucleate Reed–Sternberg cells and mononuclear Hodgkin’s cells were the major source.

Methods

Forty three lymph node biopsy specimens were studied, 24 of which were frozen and sectioned for study at 4–6 μm, and the remaining 19 were fixed in 10% neutral buffered formalin and embedded in paraffin wax. Three long term Reed–Sternberg cell lines were studied, L-428, KMH2, and HDLM. A Ki1 positive lymphoma cell culture, Mac-1, was used as a positive source.
Messenger RNA for TGFβ1 in Reed–Sternberg cells

TGFβ expression in Hodgkin’s disease tissue sections

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>No. of sections</th>
<th>TGFβ1 (CD30)</th>
<th>Ki67 (CD30)</th>
<th>TGFβ1 mRNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frozen sections</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSHD</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>Not interpretable</td>
</tr>
<tr>
<td>MCHD</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>Not interpretable</td>
</tr>
<tr>
<td>extranodal HD</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Not interpretable</td>
</tr>
<tr>
<td>lymphoma</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>Not interpretable</td>
</tr>
<tr>
<td>small lymph (n = 1)</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>follicular, small (n = 4)</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>follicular, mixed (n = 1)</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>diffuse, mixed (n = 1)</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>large cell (with sclerosis) (n = 1)</td>
<td></td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Paraffin wax sections</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSHD</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>8 (H/RS, mononuclear HD, activated lymphocytes)</td>
</tr>
<tr>
<td>MCHD</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>2 (lymphocytes)</td>
</tr>
<tr>
<td>lymphoma</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>2 (malignant cells)</td>
</tr>
<tr>
<td>follicular, mixed (n = 3)</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>diffuse, mixed (n = 1)</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>large cell (with sclerosis) (n = 1)</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

control. An epithelial cell line, CCL-64, was used as a negative control.

Anti-TGFβ is a rabbit IgG antibody purified by antigen affinity chromatography (R&D Systems, Minneapolis, Minnesota, USA). The antibody detects TGFβ1, β1.2, β2, β3, and β5 on Western blotting. BER-H2 (anti-Ki1; anti-CD30) recognises Ki1 antigen in formalin fixed tissue (M751; Dako, Carpentaria, California, USA).

A complementary DNA (cDNA) was constructed according to the published sequence for TGFβ1.16 The 44 base biotin labelled oligonucleotide was as follows: 5’ AC GCA GCA GGT CTT CTC TGT GGA GAA GCA ATA GTT GGT GTC 3’. A control biotin labelled sense probe was also constructed: 5’ TG CGT CGTCAA GAA GAG ACA CCT CCT CGT GAT CAA CCA CAG 3’.

Immunoperoxidase staining was performed on cytospins, deparaffinised tissue sections, and frozen tissue sections. In situ hybridisation was performed on cytospins of cultured cells after fixation in paraformaldehyde (4%) for five minutes. Tissue sections were placed on gelatin coated glass slides treated with diethyl pyrocarbonate. Paraffin wax embedded tissue samples were dewaxed and target sequences were unmasked using weak acid (0.2 M HCl for 20 minutes) and proteinase K/EDTA. Non-specific binding was blocked using transfer RNA (tRNA) (1 mg/ml) and salmon testis DNA (1 mg/ml). In addition to the positive and negative cellular controls three internal negative controls were used: RNase A (Sigma, St Louis, Missouri, USA), unlabelled antisense probe, and labelled sense probe. Heat denatured oligonucleotides were incubated overnight at 37°C with the target slides. The slides were washed and the hybridised biotin probe label was detected using avidin alkaline phosphatase (30 minutes at 20°C) followed by nitro blue tetrazolium buffered by BCIP (5-bromo-4-chloro-3-indolyl-phosphate p-toluidine). After washing, the slides were lightly counterstained with haematoxylin and covered with a coverslip.

Results

Figures 1 and 2 show L-428 and HDLM Reed–Sternberg cells positive for TGFβ1 mRNA on in situ hybridisation. L-428 and HDLM (NSHD) had higher quantities of mRNA per cell than KMH2 (mixed cellularity Hodgkin’s disease) (data not shown). Ki1 positive control lymphoma cells also expressed TGFβ1 mRNA, confirming previous reports.17 Epithelial cells in G0 did not express TGFβ1 mRNA.

The anti-TGFβ antibody used in the present study was prepared against purified TGFβ1 and detected TGFβ only in frozen tissue. The observations confirmed the previous report of predominant NSHD expression. In seven of nine NSHD lymph nodes TGFβ antigen could be identified within the lymph node in extracellular sites, particularly adjacent to collagen fibrosis. The results of staining for TGFβ and Ki1 antigen in 24 frozen lymph nodes are summarised in the table.

In situ hybridisation for TGFβ1 mRNA was performed in 19 formalin fixed tissue samples. The NSHD subtype expressed TGFβ1 mRNA more strongly than the other lymph node tissue samples studied. Eight of eight NSHD lymph node samples contained Hodgkin’s cells expressing TGFβ1 mRNA. The results are summarised in the table and presented in figs 3 and 4.

Some lymph node fields contained large numbers of eosinophils with granules that bound the TGFβ1 mRNA oligonucleotide probe. Control sections treated with RNase or a sense probe continued to bind TGFβ1 antisense mRNA. This false positive binding is illustrated in fig 5.

Figure 3 In situ hybridisation for TGFβ1 mRNA in NSHD. Panel A shows strong expression of mRNA by a Reed–Sternberg cell. Control panel B has been hybridised with a sense probe for TGFβ1 mRNA. The Reed–Sternberg cell with giant nuclei is negative (× 650).

Discussion

Production of cytokines by Reed–Sternberg cells and mononuclear Hodgkin’s cells has been
A Reed–Sternberg cell is a non-dividing cell with low concentrations of newly synthesised mRNA. Some Reed–Sternberg cells contain TGFβ1 mRNA.

The polyclonal population of a Hodgkin’s disease lymph node contains many cells, either recruited directly by cytokines from Hodgkin’s/Reed–Sternberg cells, or recruited by secondary events. Activated lymphocytes responding to IL-3, interferon-γ, IL-4, and IL-6 are potential sources of activated TGFβ. The normal lymphocyte activation process takes place over 24 hours, firstly by TGFβ mRNA expression, then TGFβ receptor expression, and lastly by secretion of TGFβ. The current study suggests that these events take place in vivo in Hodgkin’s tissue.

Eosinophils are recruited into Hodgkin’s mixed cellularity lymph nodes, at least partially, by the secretion of IL-5 by Hodgkin’s/Reed–Sternberg cells. The sparse eosinophils within the NSHD lymph node could be a third source of TGFβ, in addition to Hodgkin’s/Reed–Sternberg cells and lymphocytes. The nature of eosinophil TGFβ, active or inactive, has not been evaluated and in situ hybridisation studies using the intact 1050 base pair cDNA could be misleading because of the inability of this large probe to hybridise with all sites. The findings reported here suggest that eosinophils produce false positive binding of TGFβ1 mRNA.

In summary, in situ hybridisation using a biotin labelled oligonucleotide for TGFβ1 shows that mononuclear Hodgkin’s cells and some Reed–Sternberg cells are a source of TGFβ, particularly in NSHD. The biological actions of TGFβ1 are well described and the ability of activated lymphocytes and cloned Hodgkin’s/Reed–Sternberg cells to secrete physiologically active TGFβ has been shown in vitro. In vivo, elimination of urinary TGFβ has been shown after induction of remission in NSHD.

The observations reported here lend additional support to the hypothesis that Hodgkin’s disease arises as a result of transformation of an activated cell that, in turn, induces many of the morphological and clinical features of Hodgkin’s disease via the elaboration of potent cytokines.

Supported by NIH Grant CA 50739 from the National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.

Transforming growth factor beta 1 messenger RNA in Reed-Sternberg cells in nodular sclerosing Hodgkin's disease.

S R Newcom and L Gu

doi: 10.1136/jcp.48.2.160

Updated information and services can be found at:
http://jcp.bmj.com/content/48/2/160

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/