Cervical cytology external and internal quality assurance: a comparative appraisal

D N Slater

Introduction
The National Health Service Cervical Screening Programme (NHSCSP) requires purchasers to ensure that laboratories are participating in appropriate external quality assessment schemes. Laboratory providers must also show evidence in their business plans of active participation in both external and internal quality assurance programmes. However, little information is available on the comparative value of the different methods of quality assurance.

As Chairman of the Trent Regional Gynaecological Cytology External Quality Assessment Committee I am involved in the monitoring of cytoscreener performance. This article describes a series of events which permitted an appraisal of external and internal quality assurance methods. The findings are relevant to quality assurance in the NHSCSP. To maintain confidentiality, the cytopathology department is kept anonymous.

Case Report
Cytology department X is the main provider of the NHSCSP for one district in the Trent region. Its cytoscreener and checker workload/staff ratio conforms to the British Society for Clinical Cytology (BSCC) guidelines and the total number of slides screened per annum by the Laboratory is well above the recommended BSCC laboratory minimum. The environment for screening, although not perfect, is comparable with several other laboratories within the region. No undue pressure had been placed on staff when there have been backlogs in reporting time.

External quality assessment is achieved primarily by full participation in the Trent regional gynaecological cytology proficiency testing scheme, which is also part of the national scheme. The laboratory also participates in a local slide exchange external quality assessment scheme. Before 1993, internal quality control comprised the selected re-screening of high risk clinical categories, 10% random re-screening, double screening of diagnostic samples, and correlation between cytological and histopathological diagnoses. Since 1993, internal quality control has also included review of previous negative cytology smears from patients later presenting with at least moderate dyskaryosis. This extension of internal quality control was largely facilitated by earlier computerisation of the department.

Before 1993, there had been no perceived problems with either external or internal quality assurance and no member of staff had failed any round of the proficiency testing scheme. However, during 1993, it became increasingly evident from negative smear review that one cytoscreener (A) appeared to be particularly associated with the occurrence of false negative reports. Accordingly, a decision was made to review the accuracy of cytoscreener A’s work by re-screening 500 consecutive cervical smears, previously reported as negative. All ongoing work of cytoscreener A was also to be checked until the potential problem had been assessed.

The re-screening exercise was undertaken by two consultant cytopathologists, and one senior and three chief medical laboratory scientific officers. In general, with the exception of borderline changes, re-screened slides produced an excellent uniformity of opinion. It was therefore considered appropriate to evaluate the findings on the basis of missed inadequate smears and the false negative rate of missed dyskaryotic smears (table 1). Missed inadequate smears were expressed as a percentage of total re-screened smears and the false negative rate was calculated using the standard statistical definition. The number of previously reported abnormal smears, relating to the 500 review slides, was obtained from the laboratory computer. The identified false negative rate of 15%, however, proved difficult to interpret in the absence of any published national standard for false negative rates in the NHSCSP. Therefore, the re-screening exercise was extended to include four additional cytoscreeners to permit further comparison. A period of illness during late 1991 may also have adversely affected the 1993 false negative rate.

<table>
<thead>
<tr>
<th>Cytoscreener</th>
<th>Missed inadequate rate (%)</th>
<th>False negative rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>93</td>
<td>16</td>
</tr>
<tr>
<td>1991</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>E</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
Results of cytoscreeener A before and after refresher course

<table>
<thead>
<tr>
<th>Course</th>
<th>False negative rate (%)</th>
<th>False positive rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-refresher</td>
<td>12</td>
<td>34</td>
</tr>
<tr>
<td>Post-refresher</td>
<td>3</td>
<td>13</td>
</tr>
</tbody>
</table>

Additional work from cytoscreeener A, taken from early 1991, was rescreened (table 1).

A review of the literature suggested that the overall false negative rate of 15% for cytoscreeener A, although high, was probably neither wholly unreasonable nor negligent. Compared with the other cytoscreeeners in the department, however, the performance of cytoscreeener A was probably marginal, but improvements in practice could be expected and attendance at a refresher course at a BSCC recognised training school (Sheffield Northern General Hospital) could be beneficial. Cytoscreeener A had also received some in-house retraining, before attending the refresher course, which involved screening slide sets. Unknown to cytoscreeener A, these sets had included all of the missed dyskaryotic smears from the re-screening exercise.

The slides were then renumbered and represented to cytoscreeener A on returning from the refresher course. The substantial improvement in false negative and false positive rates following the refresher course is shown in table 2. In view of this improvement cytoscreeener A was allowed to return to unsupervised screening but with continued careful monitoring.

No deterioration in standards was noticed during the subsequent six months. As a consequence of this experience, it seemed imperative to ascertain whether any other method of internal quality control could have detected or suggested the initial marginal screening performance by cytoscreeener A. The laboratory computer was therefore used to generate statistics relating to individual cytoscreeeners. This included the number of slides screened per annum, pick-up rates, and referral rates to checkers of slides eventually reported as negative. The latter served as an indicator of slides referred by cytoscreeeners to checkers for a second opinion. The results are shown in table 3 and relate to cytoscreeeners all working on a 0.5 whole time equivalent basis and having a similar screening case-mix. The points of interest, with particular reference to cytoscreeener A, included the extremely low referral rate for a second opinion and the low pick-up rate of borderline changes and mild dyskaryosis. It is of particular interest that cytoscreeener A screened the largest number of slides per annum, although just within the BSCC guidelines. An inverse trend could also be seen between the overall pick-up rate and slides screened per annum. The validity of this approach is shown by comparing average cytoscreeener performance with the corresponding KC61 return. Cytology department X has now incorporated previous negative slide review and the statistical analysis of cytoscreeener work into its internal quality control procedures.

Discussion

It could be construed as unfortunate that the proficiency testing scheme failed to identify or suggest the possibility of marginal cytoscreeener performance. Indeed, proficiency testing could therefore even be criticised for conveying a false impression of diagnostic accuracy and that no problems existed. However, continuing personal experience, as a regional chairman for the scheme, has convinced me that proficiency testing has an important role in the identification of overtly poor performance. Furthermore, proficiency testing also provides an important means to standardise interdistrict and inter-regional reporting practice. This case report, however, emphasises that no one method of quality assurance in the NHSCSP should be regarded as absolute and each, whenever possible, should be interpreted in the light of other methods.

Similarly, it is disappointing that several accepted standard methods of internal control also failed to identify or suggest marginal performance. There is, however, increasing agreement that 10% random re-screening is probably not a reliable method of internal quality control. A pilot study in the Trent region is currently assessing the value of 10% targeted re-screening and its ability, from rolling amalgamated data, to derive the false negative rate of individual cytoscreeeners. The results of this study appear promising and will be published in the near future. An intriguing question is whether 30 second/rapid re-screening would have identified the marginal performance, but unfortunately, the study provided no information on this point. “The review of previous cytology when current cytological material shows unexpected abnormality” is a listed method of internal quality control in publications from both the BSCC and the Department of Health. However, there are
Cervical cytology external and internal quality assurance

97

guidelines on preferred options and, furthermore, all methods are implied to have a similar weighting. As a result of this experience, it would appear reasonable to suggest that all laboratories should practice negative smear review as an essential part of internal quality control. It also adds validity to recommendations that slides should be stored for at least 10 and preferably 20 years.1,6,7

This case confirms that the statistical analysis of individual cytoscreener performance is a useful means of internal quality control, although to date the method has only been formally advocated in Scotland.8 It appears that use of this method would have identified the apparent reluctance of cytoscreener A to seek a second opinion and revealed her difficulties in recognising low grade nuclear abnormalities. As in another study9 no correlation was seen between the pick-up rate and the false negative rate, but intriguingly, the pick-up rate appeared to be increasingly compromised by workloads approaching the BSCC recommended maximum for cytoscreeners.3 This approach also permits a critical breakdown of a laboratory's performance, provided overall in its KC61 returns.

In the absence of any nationally agreed standards it proved extremely difficult to interpret the significance of cytoscreener A's false negative rate. Consequently, the published information relating to this area was reviewed and has been discussed in detail elsewhere.10 In summary, it appears that even the best NHSCSP laboratories may have difficulty in bettering a 3-5% false negative rate and that this range may include the so-called standard excellence. In comparison, it is possible that some laboratories in the United Kingdom are working with an overall false negative rate as low as 15% and that this may constitute the minimum acceptable standard. The main role of quality assurance is to ensure that a minimum acceptable standard is maintained and to pursue improvements in quality towards standards of excellence by means of audit and education. The latter point is particularly well illustrated by this case, where substantial improvement in performance was noted following attendance at a recognised refresher course. This fully supports Health Service guidelines that emphasise the necessity to have adequate regional facilities for updating medical and nonmedical laboratory staff.1

If national standards for false negative rates in gynaecological cytology are to be advocated, a decision will have to be made whether borderline changes should be incorporated into the calculation. With reference to cytoscreener A, the identification of borderline changes appeared to be a problem and possibly even more so than missed dyskaryosis. However, missed borderline changes had to be omitted from the false negative rate calculation as little consensus of opinion could be achieved between those rescreening the smears. The new national guidelines on borderline change11 may overcome these diagnostic problems and reduce interobserver variation. However, it could be argued that the false negative rate should only refer to missed "neoplastic" lesions and that borderline changes should be omitted.

Missed inadequate smears are an important cause of false negative laboratory reports and can have the same adverse consequences as missed dyskaryosis.12 The analysis of individual cytoscreener performance can identify low reporting rates of inadequate smears and the audit of missed inadequate smears constitutes a useful method of internal quality assurance. Despite national guidelines to define smear inadequacy, however, the average reporting rates between centres varies tremendously. Therefore, it is essential that screening of inadequate smears is included in External Quality Assessment schemes.

This report also highlights that, to date, there is no nationally agreed procedure to formally review the adequacy of cytoscreener performance. The 500 negative slide re-screen used in this assessment was chosen on the basis that this approach is used in the United States.13 The case also served as a reminder that the accuracy of previously reported work by an identified persistent poor performer remains an unresolved issue. The re-screening of gynaecological cytology smears can also have the unfortunate consequence of identifying abnormalities that necessitate the issuing of amendments to both patients and general practitioners. In this case it is extremely fortunate that most of the patients had already undergone repeat testing.

The author thanks the Head of Department of the cytopathology department involved for permission to report this case. The author also thanks Mrs Eileen Hewer, Regional Facilitator for the Trent Regional gynaecological cytology proficiency testing scheme, for practical help in assessing this problem.

6 The Health of the Nation. First steps for the NHS. NHS Management Executive, Department of Health, 1992:19.
14 Slater DN. Cervical cytology internal quality assurance—what are the national standards? Cytopathology 1994;5: 207-10.

Downloaded from http://jcp.bmj.com/ on October 21, 2017 - Published by group.bmj.com
Cervical cytology external and internal quality assurance: a comparative appraisal.

D N Slater

doi: 10.1136/jcp.48.2.95

Updated information and services can be found at:
http://jcp.bmj.com/content/48/2/95.citation

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/