Relationship of blood rheology to lipoprotein profile during normal pregnancies and those with intrauterine growth retardation

A Muñoz, J Uberos, A Molina, A Valenzuela, D Cano, C Ruiz, J A Molina Font

Abstract

Aims—The effects on fetal growth of hyperlipidaemia in pregnancy are not well understood at present. In this study the different lipid fractions in normal pregnancies and pregnancies complicated by intrauterine growth retardation (IUGR) were determined and related to changes in plasma and serum viscosity.

Methods—Two groups of pregnant women were studied. Group 1 consisted of 35 healthy pregnant women aged between 21 and 38 years with no previous pathology and a normal pregnancy to term. Group 1 patients were studied at four periods defined at the start of the study: (1) < 17 weeks; (2) 18–24 weeks; (3) 25–32 weeks, (4) ≥ 33 weeks. Group 2 consisted of 24 pregnant women aged between 16 and 34 years with ultrasound diagnosed IUGR confirmed after birth. Plasma lipids and plasma and serum viscosity were measured.

Results—Plasma triglycerides, low density lipoprotein cholesterol, and total cholesterol increased progressively throughout pregnancy, with significantly higher values after week 25. Apolipoprotein A (ApoA) and triglyceride concentrations were significantly lower in the IUGR group than in the normal group. The HDL/ApoA ratio was greater in the IUGR group than in the control group, as was the ApoB/ApoA ratio. There were no differences in the other lipids. Plasma and serum viscosity was higher in the IUGR group than in the normal group.

Conclusions—Haemorheological modifications in the IUGR group are partly secondary to changes in high density lipoprotein metabolism and the competitive inhibition of fibrinolysis by ApoB, which is increased in pregnancies with IUGR. Changes in ApoA, and more specifically in the ApoB/ApoA ratio, could be good markers for the early detection of IUGR.

Keywords—Intrauterine growth retardation, hyperlipidaemia, fibrinolysis, fibrinogen, pregnancy, viscosity, blood rheology.

Hyperlipidaemia is commonly found in the normal population associated with pathologies such as atherosclerosis and hypertension. In pregnant women, however, it also has serious implications but these are not yet fully understood. The increased nutritional requirements of the fetoplacental unit and the endocrine profile during pregnancy could provide the starting point to explain these modifications. More studies on biochemical changes during pregnancy are necessary to establish a range of normality in order to characterise excessive gestational lipolytic responses. This would enable us to determine if the changes in the lipoprotein profile during pregnancy imply a greater atherogenic risk with possible repercussions on fetal growth and development. In this study the different lipid fractions in normal pregnancies and in pregnancies with intrauterine growth retardation (IUGR) were determined and related to changes in plasma and serum viscosity.

Methods

SAMPLE DEFINITION AND CHARACTERISTICS

Fifty nine pregnant women were studied. These were divided into two groups. The first group consisted of 35 healthy pregnant women aged between 21 and 38 years (27 (SD 3.5) years) with no previous pathology, a pregnancy to term without complications (with a gestational age of 279 (10) days), and a birthweight of 3345.4 (449.3) g. The second group consisted of 24 pregnant women aged between 16 and 34 years (24.5 (4.9) years) with a gestational age at term of 278 (12) days, with ultrasound diagnosed IUGR. The diagnosis of IUGR was made on the basis of a biparietal diameter >2 SD below the mean at 33 weeks of gestational age. The birthweight in newborns with intrauterine growth retardation was between 1170 g and 2830 g (2305±4 (344-7) g).

METHODOLOGY

The women were fasting before blood was drawn. Analytical determinations were carried out in four study periods defined at the beginning of the study: (1) pregnant ≤ 17 weeks; (2) pregnant 18 to 24 weeks; (3) pregnant 25 to 32 weeks; (4) pregnant ≥ 33 weeks. The following variables were analysed in all cases: total cholesterol, triglycerides, high density lipoproteins (HDL), low density lipoproteins (LDL), free fatty acids, and phospholipids by enzymatic microtechnique, 3,4 apolipoprotein A

Department of Paediatrics, University of Granada Hospital, Granada, Spain
A Muñoz J Uberos A Molina A Valenzuela C Ruiz J A Molina Font

Physiology, Department, University of Granada Hospital, Granada, Spain
D Cano

Correspondence to:
Dr José Uberos Fernández, Avda Salobrena 37, psal 6-4-A, Mzool 18600 Granada, Spain.
Accepted for publication 4 August 1994

J Clin Pathol 1995;48:571–574
Table 1 Apolipoprotein and lipid means in healthy pregnant controls and in women with intrauterine growth retardation. Values are means (SD)

<table>
<thead>
<tr>
<th>Gestation (weeks)</th>
<th><17</th>
<th>18-24</th>
<th>25-32</th>
<th>>33</th>
<th>IUGR (>33)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC (mmol/l)</td>
<td>5.33 (0.63)</td>
<td>5.45 (0.95)</td>
<td>5.67 (1.07)</td>
<td>6.53 (1.14)</td>
<td>6.41 (1.03)</td>
</tr>
<tr>
<td>TG (mmol/l)</td>
<td>1.42 (0.40)</td>
<td>1.45 (0.92)</td>
<td>1.95 (1.63)</td>
<td>2.46 (1.73)</td>
<td>2.71 (1.59)*</td>
</tr>
<tr>
<td>LDL (mmol/l)</td>
<td>2.80 (0.57)*</td>
<td>2.58 (0.86)</td>
<td>3.27 (0.83)</td>
<td>3.51 (1.07)</td>
<td>3.41 (0.89)</td>
</tr>
<tr>
<td>HDL (mmol/l)</td>
<td>1.72 (0.40)</td>
<td>1.90 (0.70)</td>
<td>1.90 (0.28)</td>
<td>1.78 (0.38)</td>
<td>1.80 (0.49)</td>
</tr>
<tr>
<td>ApoA (g/l)</td>
<td>0.95 (0.16)*</td>
<td>0.96 (0.31)</td>
<td>1.20 (0.35)</td>
<td>1.38 (0.31)</td>
<td>1.49 (0.30)</td>
</tr>
</tbody>
</table>
| IUGR = intrauterine growth retardation over 33 weeks of gestational age; ApoA = apolipoprotein A; ApoB = apolipoprotein B; TC = total cholesterol; TG = triglycerides; HDL = high density lipoprotein cholesterol; LDL = low density lipoprotein cholesterol; FFA = free fatty acids; PL = phospholipid.
* p<0.05; † p<0.01, statistical significance observed among women at >33 weeks' gestation, and those at <17, 18-24, 25-32 weeks' gestation and IUGR (>33 weeks).

Table 2 Ratios of lipoprotein constituents in healthy pregnant controls and in women with intrauterine growth retardation. Values are means (SD)

<table>
<thead>
<tr>
<th>Gestation (weeks)</th>
<th><17</th>
<th>18-24</th>
<th>25-32</th>
<th>>33</th>
<th>IUGR (>33)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ApoB/ApoA</td>
<td>0.40 (0.49)*</td>
<td>0.38 (0.45)*</td>
<td>0.40 (0.56)*</td>
<td>0.52 (0.74)</td>
<td>0.76 (0.24)*</td>
</tr>
<tr>
<td>TC/HDL</td>
<td>3.09 (0.69)</td>
<td>3.02 (0.66)</td>
<td>3.24 (0.85)</td>
<td>3.56 (0.70)</td>
<td>3.56 (1.27)</td>
</tr>
<tr>
<td>LDL/HDL</td>
<td>1.62 (0.53)</td>
<td>1.43 (0.49)</td>
<td>1.72 (0.57)</td>
<td>1.97 (0.82)</td>
<td>1.89 (1.05)</td>
</tr>
<tr>
<td>HDL/ApoA</td>
<td>0.74 (0.05)</td>
<td>0.65 (0.07)</td>
<td>0.63 (0.05)</td>
<td>0.67 (0.05)</td>
<td>0.80 (0.03)</td>
</tr>
<tr>
<td>FFA/TG</td>
<td>0.014 (0.0002)</td>
<td>0.016 (0.005)</td>
<td>0.012 (0.002)</td>
<td>0.012 (0.002)</td>
<td>0.015 (0.002)</td>
</tr>
</tbody>
</table>
| IUGR = intrauterine growth retardation over 33 weeks of gestational age; ApoA = apolipoprotein A; ApoB = apolipoprotein B; TC = total cholesterol; TG = triglycerides; HDL = high density lipoprotein cholesterol; LDL = low density lipoprotein cholesterol; FFA = free fatty acids; PL = phospholipid.
* p<0.05; † p<0.01, statistical significance observed among women at >33 weeks' gestation, and those at <17, 18-24, 25-32 weeks' gestation and IUGR (>33 weeks).

Table 3 Plasma proteins and serum and plasma viscosity in healthy pregnant controls and in women with intrauterine growth retardation. Values are means (SD)

<table>
<thead>
<tr>
<th>Gestation (weeks)</th>
<th><17</th>
<th>18-24</th>
<th>25-32</th>
<th>>33</th>
<th>IUGR (>33)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin (g/dl)</td>
<td>3.34 (0.56)*</td>
<td>3.90 (0.41)*</td>
<td>3.66 (0.34)</td>
<td>3.52 (0.29)</td>
<td>3.46 (0.43)</td>
</tr>
<tr>
<td>a1, globalin (g/dl)</td>
<td>0.32 (0.05)</td>
<td>0.28 (0.04)*</td>
<td>0.31 (0.05)</td>
<td>0.33 (0.04)</td>
<td>0.42 (0.19)*</td>
</tr>
<tr>
<td>a2, globalin (g/dl)</td>
<td>0.08 (0.1)</td>
<td>0.07 (0.13)</td>
<td>0.07 (0.13)</td>
<td>0.07 (0.13)</td>
<td>0.06 (0.22)</td>
</tr>
<tr>
<td>β globulin (g/dl)</td>
<td>0.95 (0.27)</td>
<td>0.90 (0.21)*</td>
<td>1.03 (0.13)</td>
<td>1.02 (0.18)</td>
<td>0.99 (0.21)</td>
</tr>
<tr>
<td>γ globulin (g/dl)</td>
<td>0.81 (0.16)</td>
<td>0.76 (0.19)</td>
<td>0.80 (0.21)</td>
<td>0.78 (0.17)</td>
<td>0.78 (0.30)</td>
</tr>
<tr>
<td>Total protein (g/dl)</td>
<td>7.12 (0.77)</td>
<td>6.53 (0.58)</td>
<td>6.53 (0.48)</td>
<td>6.31 (0.50)</td>
<td>6.39 (0.74)</td>
</tr>
<tr>
<td>Plasma viscosity (PV) (mPa.s)</td>
<td>1.09 (0.08)</td>
<td>1.06 (0.15)</td>
<td>1.08 (0.15)</td>
<td>1.12 (0.12)</td>
<td>1.26 (0.15)*</td>
</tr>
<tr>
<td>Serum viscosity (SV) (mPa.s)</td>
<td>0.95 (0.09)</td>
<td>0.96 (0.13)</td>
<td>1.00 (0.12)</td>
<td>0.94 (0.07)</td>
<td>1.03 (0.13)*</td>
</tr>
<tr>
<td>PV-SV (mPa.s)</td>
<td>0.13 (0.13)</td>
<td>0.09 (0.2)</td>
<td>0.08 (0.14)</td>
<td>0.17 (0.15)</td>
<td>0.22 (0.2)</td>
</tr>
</tbody>
</table>
| IUGR = intrauterine growth retardation over 33 weeks of gestational age; PV-SV = difference between plasma and serum viscosity.
* p<0.05; † p<0.01, statistical significance observed among women at >33 weeks' gestation, and those at <17, 18-24, 25-32 weeks' gestation and IUGR (>33 weeks).

Discussion
Changes in lipid levels during pregnancy result from the metabolic adaptation of the mother. Mobilisation of fat deposits, the increase in free fatty acids, and the relationship between circulating progesterone and oestrogen levels...
suggest that these hormones are responsible for the lipid changes observed. Placental lactogen favours the release of fats from their deposits and an increase in free fatty acids, both being vital adaptations to ensure the availability of adequate energy substrate to the fetus.1 Like Jimenez et al.,11 we did not find any significant differences in HDL during pregnancy, although a slight increase in mean HDL levels was observed between weeks 25 and 32 as also reported by Piechota and Staszewski.10 Increases in total cholesterol and triglycerides, confirmed by other workers,10,12-14 are observed in the last few weeks of pregnancy. The small non-significant increase in free fatty acid concentrations throughout pregnancy suggests that lipolysis of endogenous triglycerides is not increased. In accordance with other investigators,10,15 ApoB concentrations progressively increase throughout pregnancy. In normal pregnancies, mean ApoA values show a non-significant decrease after week 33 whereas in the women with IUGR a decrease to below pregestational levels is observed (table 1).

An increase in lipid levels after week 25 of pregnancy is referred to in more than one paper.10,11 This results from adaptation of lipid metabolism to the requirements of pregnancy. The increase in triglyceride concentrations in normal pregnancies indicates a progressive increase in the supply of free fatty acids to the fetus during pregnancy. The free fatty acids to triglyceride ratio, indicative of triglyceride lipolysis, decreases slightly after week 25, in spite of an increase in triglyceride concentrations in the last period of pregnancy. This suggests that the increase in endogenous triglycerides is not equivalent to the increase in endogenous lipoprotein (table 2).

The ApoA concentration increases significantly between weeks 25 and 32 of pregnancy, although the HDL/ApoA ratio was not significantly different in the gestational periods considered. Pregnancy women with IUGR, however, have modifications in HDL composition (a significantly greater HDL/ApoA ratio). In contrast to the findings of Piechota and Staszewski,10 we could not detect any significant changes in HDL composition in the final gestational stages in the normal pregnancies; this is probably because these investigators did not distinguish between normal pregnancies and pregnancies with IUGR, which in our study are treated as two separate groups.

The ApoB/ApoA ratio is considered to be the most sensitive atherogenic index and its mean value at the end of the pregnancy is significantly higher than in previous stages. This indicates that the lipoprotein profile in normal pregnancies is more atherogenic in the final stages and is significantly abnormal in women with IUGR (table 2).

The LDL and HDL concentrations in normal pregnancies are closely related to circulating progesterone and oestrogen and to the pregnancy period in which they are determined. The HDL concentration increases, through a rise in ApoA synthesised predominantly in the liver, when oestrogen levels are raised.10 The ApoA level is significantly lower in women with IUGR than in normal pregnancies but further studies have yet to be carried out to elucidate the mechanisms involved.

The diastolic blood pressure increases progressively throughout pregnancy and could respond to changes in water compartmentalisation or to an increase in the plasma viscosity following competitive inhibition of the plasminogen endothelial ApoB receptors, which is increased during pregnancy.16

Fletcher et al.17 have found changes in plasma fibrinogen in pregnant women which are related to an increase in fibrinogen catabolism initiated by the action of thrombin, and causing fibrinogen-fibrin complexes (high molecular weight fibrin complexes—HMWFC). The levels of HMWFC in pregnant women are greater than in non-pregnant women.17 We know of no similar studies in which catabolism of fibrinogen has been evaluated in pregnancies complicated by IUGR.

We did not measure fibrinogen because we did not have large enough sample volumes although we did determine the difference between plasma and serum viscosities to evaluate the changes in viscosity which are produced by fibrinogen. Pregnancy is associated with a rise in fibrinogen and in factors VII, VIII, IX, X, and XII which has been interpreted as being the result of hormonally induced changes in blood coagulation system function.18 The plasma viscosity is significantly greater in pregnant women with IUGR, in whom there is a more pronounced increase in fibrinogen level.18,19
The difference between the plasma viscosity and serum viscosity could be a good index of changes resulting from the fibrinogen fraction. Variation coefficients indicating the difference between the viscosities in the two groups in our study were greater than those cited by Ernst et al and reveal a large variability in the relationships between the viscosity and fibrinogen. This could be explained by increased fibrinolytic activity in pregnant women which makes the viscosity difference method unreliable under the circumstances.

The comparison between the protein fractions of the normal pregnancies and the IUGR group shows differences only in the α1 globulin fraction. HDL have a high electrophoretic mobility in the α1 band. Although HDL values were not statistically different in the two groups, a compositional change can be observed in these lipoproteins in the IUGR group, with a decrease in ApoA. The relationship between plasma viscosity and α1 globulins in normal pregnancies disappears in pregnancies with IUGR (figure). The concurrent decrease in ApoA and increase in ApoB in pregnancies with IUGR could partly explain the viscosity changes that occur in this group. The affinity of both ApoB and apolipoproteins for the same endothelial receptors, leading to competitive inhibition of fibrinolysis, could explain the increase in plasma viscosity observed in the IUGR group.

Causes of the decrease in ApoB and the increase in the other protein fractions within the α1 electrophoretic band in pregnant women with IUGR have yet to be discovered. On the basis of our results we suggest that haemorheological modifications in the IUGR group, reported by several investigators, are in part secondary to changes in high density lipoprotein metabolism and the competitive inhibition of fibrinolysis by ApoB, which are increased in the pregnant women with IUGR. Although more thorough clinical assays are necessary, changes in ApoA, and more specifically in the ApoB/ApoA ratio, could be good markers for the early detection of IUGR.

We wish to thank Dr A Puertas and the Obstetrics Unit (Virgen de las Nieves Hospital) for technical assistance. We thank Ms Ana Gómez and Ms Caroline Coope for translating the original manuscript into English.
Relationship of blood rheology to lipoprotein profile during normal pregnancies and those with intrauterine growth retardation.

A Muñoz, J Uberos, A Molina, A Valenzuela, D Cano, C Ruiz and J A Molina Font

J Clin Pathol 1995 48: 571-574
doi: 10.1136/jcp.48.6.571

Updated information and services can be found at:
http://jcp.bmj.com/content/48/6/571

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/