Value of screening for oro-pharyngeal Chlamydia trachomatis infection

S P R Jebakumar, C Storey, M Lusher, J Nelson, B Goorney, K R Haye

Abstract
Aims—To determine whether oro-pharyngeal colonisation by Chlamydia trachomatis occurs in patients at risk of genital chlamydia infection; to determine whether screening pharyngeal specimens by polymerase chain reaction (PCR) increases detection of C trachomatis compared with isolation and the immune dot blot test; and to correlate the detection of C trachomatis and Neisseria gonorrhoeae in the pharynx with a history of oro-genital contact.

Methods—Thirteen homosexual and 11 heterosexuals were included in the study. Urogenital and pharyngeal specimens were tested for C trachomatis and N gonorrhoeae using standard clinical diagnostic procedures. Two different PCR methodologies were also used to detect C trachomatis in the pharyngeal specimens. Results were correlated with the mode of sexual practice.

Results—Oro-genital sexual contact was practised by 64-9% (72/111) of heterosexuals in addition to penetrative peno-vaginal intercourse. Additionally, 62-1% (77/124) of all patients did not use any form of barrier protection. Of those who admitted to oro-genital sexual contact, 17-6% of patients with a genital chlamydial infection and 36-4% of those with genital gonorrhoea also had asymptomatic pharyngeal colonisation. C trachomatis was detected in three of 124 (2-4%) pharyngeal specimens by PCR which were reported as negative by chlamydial culture; one was positive by the immune dot blot test.

Conclusion—The majority of patients practised unprotected oro-genital contact and significant pharyngeal colonisation by C trachomatis and N gonorrhoeae occurred if genital infection was present. Despite the use of PCR in a population at high risk of sexually transmitted disease, the prevalence of chlamydia in the pharynx was very low. This indicates that transmission of C trachomatis to the oropharynx does not pose a serious health risk and that screening of patients for oropharyngeal C trachomatis is not worthwhile.

Keywords: Chlamydia trachomatis, Neisseria gonorrhoeae, oro-genital contact, PCR.

Since the advent of the HIV epidemic, sexually active heterosexual and homosexual populations have apparently engaged more frequently in oro-genital contact. Urogenital infection with Chlamydia trachomatis is well recognised in these groups, but less is known about pharyngeal colonisation. A previous study from the USA showed a prevalence of pharyngeal chlamydial infection of 3-2% in women and 3-7% in heterosexual men from a sexually transmitted disease (STD) clinic population. However, other reports have failed to recover any pharyngeal chlamydias from patients with asymptomatic or symptomatic pharyngitis. Studies carried out in the 1980s, mainly in homosexual patients, recovered chlamydias from the pharynx of 1-3% to 4-5% of the patients studied, but it was not clear whether this low prevalence was genuine or due to insensitive diagnostic procedures.

We were encouraged by recent reports that chlamydias could be detected in the urogenital tract using polymerase chain reaction (PCR) when culture was negative. To date, there are no published studies on the use of PCR for the detection of C trachomatis from extragenital sites apart from the eye. The aim of this study was to determine the prevalence of genital and pharyngeal colonisation by C trachomatis and Neisseria gonorrhoeae in a group of patients attending a genito-urinary medicine clinic and to relate microbiological findings to the patients’ mode of sexual practice. In addition to routine laboratory techniques, PCR was used to detect C trachomatis in specimens from the pharyngeal mucosa.

Methods
A prospective study was carried out between 20 July 1992 and 15 January 1993 on 124 consecutive patients, aged between 13 and 35 years, attending the Department of Genito-Urinary Medicine at the Manchester Royal Infirmary (a provincial, inner-city clinic). This sample excluded patients who had taken antibiotics within the last three months. Any symptoms of sore throat, urethral or vaginal discharge, dysuria, urethral discomfort, or pelvic pain were noted. Patients were also requested to give information about protected/unprotected sexual intercourse, oro-genital sexual contact and penetrative vaginal intercourse. A history of penetrative anal intercourse was only sought in male homosexuals.

COLLECTION AND STORAGE OF SPECIMENS
Pharyngeal swabs
Three pharyngeal swabs were taken from each patient by rolling a sterile cotton wool tipped
swab over the tonsils and posterior pharynx. One was placed in 2SP-transport medium (TM) (8 mM KH2PO4, 12 mM K2HPO4, 0-2 M sucrose), one in PCR-TM (0-4% SDS, 10 mM Tris/HCl (pH 8-4)) and the third in GC-TM (Thayers-Martins medium). The order in which the three swabs were taken was randomised.

Urethral and endocervical swabs
Two urethral swabs were taken from male patients; one was placed in 2SP-TM, the other in GC-TM. A urethral swab was taken from female patients and placed in GC-TM and, for chlamydial testing, urethral and endocervical swabs were obtained and placed in a single vial of 2SP-TM.

Rectal swabs
These were only collected from homosexual males. They were obtained under direct vision through a proctoscope by abrading the mucus. The swab was then placed in 2SP-TM.

Vaginal swabs
These were taken to test for Candida albicans and Trichomonas vaginalis.

External genitalia
External genitalia swabs for herpes simplex virus were taken if there was clinical evidence of infection.

Serum
Serum was obtained for syphilis serology. Specimens in 2SP-TM were usually placed at 4°C and transported to the laboratory within 12 hours. If transport was delayed, they were stored in liquid nitrogen. Specimens in PCR-TM were stored at −70°C until analysis.

ISOLATION OF CHLAMYDIA
Chlamydial isolation was attempted using 0-2 ml specimen in 2SP-TM in McCoy cell monolayers by standard techniques. Chlamydial inclusions were detected by indirect immunofluorescence with a monoclonal antibody directed against the chlamydial lipopolysaccharide.

IMMUNE DOT BLOT TEST
This test was carried out as described by Storey et al in which the modifications of Mearns et al in which 0-4 ml specimen in 2SP-TM was digested with 250 µg/ml proteinase K for 60 minutes at 56°C then heated to 95°C for 15 minutes. The treated specimen was added to a nitrocellulose membrane in a dot blot manifold. The bound chlamydial lipopolysaccharide was then detected with an 125I labelled monoclonal antibody.

POLYMERASE CHAIN REACTION
Two PCR tests were used in this study. The first was an in-house test which targets a region of the chlamydial plasmid with the primers CtC (5′-AAGATCCTGAAATTCTTAAGCTCGGTC-3′) and CtD (5′-TAATTGA-TCCAAACTCTGACTTTCCTC-3′). CtC hybridises to region 5331–5357 and CtD to region 5788–5762 on the L2 plasmid, and produces a PCR product of 457 base pairs. This test is capable of detecting 10 elementary bodies and will detect all C trachomatis serotypes.

Swabs in PCR-TM were vortexed for 30 seconds and then a 0-5 ml sample was removed. This was digested with 250 µg/ml proteinase K at 56°C for 60 minutes. The samples were extracted once with phenol/chloroform, precipitated in ethanol, washed in 70% ethanol, and the DNA pellet resuspended in 30 µl 10 mM Tris/HCl, 1 mM EDTA (pH 8-0). Extracted samples were stored at −40°C. Ten per cent of all swabs processed were negative controls and contained PCR-TM and were to control for contamination of the samples with chlamydial DNA within the laboratory during processing. Each PCR reaction contained 0-2 µM primer CtG, 0-2 µM primer CtD, 750 µM dATP, dCTP, dGTP and dTTP, 1 unit of Taq polymerase, 67 mM Tris/HCl, 16-6 mM (NH4)2SO4, 4 mM MgCl2, 1 mg/ml bovine serum albumin, and 0-072% 2-mercaptoethanol. Five microlitres of extracted sample were tested in a reaction volume of 100 µl. DNA was amplified by one cycle of 94°C for seven minutes, 55°C for one minute and 72°C for one minute followed by 49 cycles of 94°C for one and a half minutes, 55°C for one minute and 72°C for one and a half minutes. PCR products were analysed using electrophoresis through 1% agarose gels and by a DNA hybridisation test. For this, 20 µl of PCR product was denatured with 0-5 M NaOH, 0-5 M NaCl and then added to a nylon membrane in a slot blot manifold. The membrane was washed with ×20 SSC (×1 SSC = 0-15 M NaCl, 0-015 M Na2HPO4, 2H2O (pH 7-0)) and with ×2 SSC, air dried and then the DNA was bound to the membrane by heating to 120°C for 20 minutes. Membranes were prehybridised in 0-25% skimmed mild powder in ×6 SSC and then hybridised for 18 hours at 50°C with a 418 base pair fragment of the chlamydial plasmid (bases 5341–5759) labelled with 32P dCTP. Membranes were washed sequentially in ×2 SSC, ×0-5 SSC and ×0-1 SSC at 68°C and bound probe was detected using autoradiography.

The Amplisor C trachomatis test (Roche Products Ltd) was also used. This commercial PCR also targets the chlamydial plasmid, but uses different primers to those used in the in-house test. PCR was carried out as described by the manufacturers.

Results

TOTAL GROUP
A total of 124 patients (62 men and 62 women) were evaluated. Thirteen of the male patients were homosexuals. Of the 124 patients, 77 (62-1%) did not use any form of barrier protection (condom or cervical cap) during peno-vaginal intercourse.
PHARYNGEAL GONORRHOEA

N gonorrhoeae was isolated from four of the 124 pharyngeal specimens. Two of these were from heterosexual men with concomitant genital gonorrhoea and a history of oro-genital contact in addition to penetrative unprotected vaginal intercourse. The two other specimens were from male homosexuals who had unprotected oro-genital contact and unprotected penetrative anal intercourse associated with urethral gonorrhoea and rectal gonorrhoea (one patient). Gonorrhoea was isolated from the pharynx but not the urethra from the partner of one of these patients. Gonorrhoea was not isolated from the partner of the second homosexual patient. In the heterosexual population two of 12 (16.7%) patients with genital gonorrhoea also had pharyngeal colonisation by N gonorrhoeae.

Discussion

It has been suggested that oro-genital contact can be an effective way of transmitting genital pathogens to the pharynx. However, the lack of correlation between symptomatic pharyngitis and pharyngeal colonisation by C trachomatis and N gonorrhoeae makes it difficult for the clinician to select patients from whom to take specimens for further investigation. This may be further confounded by the reluctance of many patients to give information regarding oro-genital contact.

Our study, which is the largest study into the incidence of pharyngeal chlamydial infection among heterosexuals undertaken in the United Kingdom, shows that a significant number of patients (62.1%) attending an inner-city, provincial Genito-Urinary Medicine Clinic did not use any form of protection, thus potentially exposing them to STDs and HIV infection. In addition, 64.9% of heterosexual patients and all homosexual patients were engaged in oro-genital contact, at risk of exposing the pharyngeal mucosa to genital pathogens. Other studies have reported a similar prevalence of oro-genital sexual contact varying between 69.4% and 73%.

Our findings show that C trachomatis can be detected in the pharynx of sexually active persons by PCR. The number of positive samples was too low to permit a comparison of the three tests (immune dot blot test, Amplicor PCR, in-house PCR) and the different results could be due to sampling errors. However, all three pharyngeal specimens were positive by more than one test suggesting these are true positives despite being culture negative. All three pharyngeal specimens were from patients with a history of receptive unprotected oro-genital contact. Two of these patients were heterosexual females and the other a homosexual man. Interestingly, no patients in whom chlamydia was detected in the pharynx complained of any symptoms from this site. In a previous study Bowie et al did not find any evidence that heterosexual women with a history of oro-genital contact were more likely to have a pharyngeal chlamydial infection than women who did not; however, our study sup-

Table 2 Detection of pharyngeal chlamydia in three patients

<table>
<thead>
<tr>
<th>Gender</th>
<th>Amplicor</th>
<th>In-house</th>
<th>IDBT</th>
<th>Culture</th>
<th>Genital chlamydia</th>
<th>Unprotected oro-genital contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male homosexual*</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td>Yes</td>
</tr>
<tr>
<td>Male heterosexual</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td>Yes</td>
</tr>
<tr>
<td>Female heterosexual</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* Partner had genital chlamydia; IDBT = immune dot blot test.
ports the finding of Jones et al who found that such women were three times more likely to have a pharyngeal chlamydial infection.

The rate of transmission of chlamydia in this population is probably quite high; nearly a quarter of the heterosexuals who practised oro-genital sexual contact had a genital chlamydial infection and so would potentially have passed viable chlamydia in their genital secretions to their partners’ oro-pharynx. However, only 2-8% had a detectable pharyngeal infection. The difficulty with which C. trachomatis was recovered from the oro-pharynx in this population indicates that large numbers of organisms are not found at this site, probably because the pharyngeal mucosa is not well suited to colonisation by C. trachomatis. There is some experimental evidence to support this; in chimpanzees a higher inoculum of chlamydia is needed to initiate a pharyngeal infection than a urethral infection.21

Pharyngeal colonisation by N. gonorrhoeae in our study occurred in 3-2% of patients, none of whom had symptoms of pharyngitis. This is comparable with other studies, which indicate a prevalence ranging from 2-9% to 11.3%. A unique feature of our study was that pharyngeal colonisation by N. gonorrhoeae was not observed in the female patients. In homosexual men a much higher prevalence of pharyngeal gonorrhoea (15-4%; two of 13) was observed in comparison with heterosexual men (4-1%). The pharyngeal strains were β-lactamase negative. All of these patients had a history of receptive unprotected oro-genital contact and evidence of concomitant gonorrhoea, either in the urogenital tract or rectum. Previously, Bro-Jorgensen and Jensen19 and Willmott20 have shown that mouth to mouth transfer and mouth to genital transfer can take place with N. gonorrhoeae.

Colonisation of the pharynx by C. trachomatis and N. gonorrhoeae does occur if genital infection is also present among individuals who engaged in oro-genital contact. However, despite the use of PCR in a high risk STD clinic population the prevalence of chlamydia in the pharynx was very low. These observations should help clinicians council patients who engage in oro-genital contact. The results indicate that transmission of C. trachomatis to the oro-pharynx does not pose a serious health risk and screening of patients, at risk of infection with genital chlamydias, for oro-pharyngeal C. trachomatis is not worthwhile.

We sincerely thank Dr S Richmond, Consultant Virologist, for helping to design the study and preparing the manuscript. Special thanks are also due to nursing and reception staff at the GUM Clinic at Manchester Royal Infirmary, and Miss Sandra Bright and Mrs Carol Mather for secretarial assistance.

Value of screening for oro-pharyngeal Chlamydia trachomatis infection.

S P Jebakumar, C Storey, M Lusher, J Nelson, B Goorney and K R Haye

doi: 10.1136/jcp.48.7.658

Updated information and services can be found at:
http://jcp.bmj.com/content/48/7/658

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/