Evaluation of the Cult-Dip Plus dip slide method for urinary tract infection

J M Blondeau, Y Yaschuk, D Galenzoski, D Hrabok, M Isaacson, L Lee, H Link, L Walshaw

Abstract

Aim—To evaluate the Cult-Dip Plus (Merck, Germany), a bacteriological culture test for detecting uropathogens.

Methods—Cult-Dip Plus consists of Brolacin (CLED) and MacConkey agar, each containing methylumbelliferylglucuronide (MUG). Using 1022 urine samples, this product was compared with the routine method of calibrated loop inoculated CLED and blood agar for screening urine for uropathogens. The MUG test for identifying Escherichia coli was also evaluated.

Results—Compared with the routine method, Cult-Dip Plus has a sensitivity, specificity, positive predictive value and negative predictive value of 88.3%, 98.0%, 91.9%, and 97.1%, respectively. The MUG test correctly identified 92% of E. coli isolates with a sensitivity, specificity and positive predictive value of 91.6%, 95.2%, and 93.6%, respectively.

Conclusion—Cult-Dip Plus appears to be an alternative method to the calibrate loop method for detecting uropathogens. The MUG test permits rapid, reliable and inexpensive identification of E. coli.

Keywords: Dip slide, urinary tract infection, E. coli.

Acute urinary tract infections are a major health problem affecting an estimated 10–20% of women at some point during their lifetime.1 In healthy men the prevalence of urinary tract infections is less than 0.1%. As many as 42% of all hospital acquired infections are of the urinary tract.2

In both compromised and uncompromised hosts Escherichia coli is the micro-organism most commonly associated with urinary tract infections. Others, such as Staphylococcus sp, Enterococcus sp, Pseudomonas sp, and other species belonging to the Enterobacteriaceae are also significant causes of urinary tract infections; however, their prevalence may vary depending on the age and condition of the host. Isolation and rapid identification of micro-organisms causing urinary tract infections is important for determining the causative organism and because it affects the appropriate selection or continuation, or both, of antimicrobial therapy.

Urinalysis slides are immersable plastic paddles containing agar medium on each side. Dip slides have previously been shown to be cost-effective, easy to use devices that provide results comparable with those obtained using standard plate streaking methods.3-7 Dip slides that incorporate substrates for the detection of bacterial enzymes could result in the early identification of uropathogens. Kilian and Bulow8 showed that E. coli was one of the few bacteria to produce the enzyme B-glucuronidase. Hydrolysis of 4-methylumbelliferyl-B-D-glucuronide (MUG) by B-glucuronidase produces 4-methylumbelliferone—a product which fluoresces under ultraviolet light.

Cult-Dip Plus is a new urine dip slide consisting of Brolacin (cystine, lactose, electrolyte deficient (CLED)) and MacConkey agar, each containing MUG. We evaluated the Cult-Dip Plus for recovery of uropathogens and the MUG test for rapid identification of E. coli.

Methods

The MUG test is based on detection of fluoroscein release from 4-methylumbelliferone following hydrolysis of the parent compound by B-glucuronidase. Cult-Dip Plus was supplied by BDH (Toronto, Ontario, Canada). Blood and CLED agars were purchased from PML Microbiologicals (Edmonton, Alberta, Canada).

We prospectively analysed 1022 urine samples from different patients submitted over a two month period. The semiquantitative plate culture method described by Clarridge et al9 was used as the reference method for determining bacteriuria. For routine culture, 0.001 ml urine was delivered to each blood and CLED agar plate using a calibrated disposable loop (Simport, Quebec, Canada). This method detects ≥ 1000 colony forming units/ml (cfu/ml).

Following this, the Cult-Dip Plus dip slide was inoculated by either immersing the slide in the urine (minimum 30 ml required) or when the volume of urine was such that the paddle could not be immersed, by flooding both sides of the slide with urine using a sterile disposable pasteur pipette (5 ml). This method detects 100 cfu/ml. Colony counts of 1–10 colonies detected by Cult-Dip Plus were considered negative so as to standardise the colony count comparisons between both methods. After inoculation, culture plates/dip slides were incubated for 18–24 hours at 35–37°C.

Identification of Micro-Organisms

Typical lactose fermenting colonies resembling E. coli were identified by using the Bactident E. coli test (BDH, Toronto, Ontario, Canada), a
Evaluation of the Cult-Dip Plus dip slide method for urinary tract infection

Table 1 Comparison of 1022 urine specimens isolated by Cult-Dip Plus and routine culture

<table>
<thead>
<tr>
<th>Micro-organism</th>
<th>Both methods</th>
<th>Cult-Dip Plus</th>
<th>Routine culture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram negative bacilli</td>
<td>761</td>
<td>24</td>
<td>16</td>
</tr>
<tr>
<td>Yeast</td>
<td>181</td>
<td>16</td>
<td>24</td>
</tr>
</tbody>
</table>

* * Includes isolates in quantities greater than 10,000 cfu/ml.
* Positive: those with no visible growth and those with two or more species of micro-organism (mixed).

Table 2 Frequency of uropathogens isolated by Cult-Dip Plus and routine culture

<table>
<thead>
<tr>
<th>Micro-organism</th>
<th>Both methods</th>
<th>Cult-Dip Plus</th>
<th>Routine method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram negative bacilli</td>
<td>131</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>Gram positive cocci</td>
<td>38</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>Yeast</td>
<td>12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>All genera</td>
<td>181</td>
<td>16</td>
<td>24</td>
</tr>
</tbody>
</table>

Table 3 Summary of uropathogens MUG test positive by either Cult-Dip Plus, Bactident, or both

<table>
<thead>
<tr>
<th>Micro-organism</th>
<th>Cul-Dip Plus Isolates (No. positive/no. tested (%))</th>
<th>Bactident</th>
<th>Routine culture (No. positive/no. tested (%))</th>
<th>Bactident</th>
</tr>
</thead>
<tbody>
<tr>
<td>E coli</td>
<td>88/96 (92)</td>
<td>NT</td>
<td>70/77 (91)</td>
<td>NT</td>
</tr>
<tr>
<td>K pneumoniae</td>
<td>4/16 (25)</td>
<td>NT</td>
<td>70/77 (91)</td>
<td>NT</td>
</tr>
<tr>
<td>P mirabilis</td>
<td>2/10 (20)</td>
<td>NT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NT = not tested.

Compared with the calibrated loop method, Cult-Dip Plus had a sensitivity of 88.3%, a specificity of 98.0%, a positive predictive value of 91.9%, and a negative predictive value of 97.1% (table 1).

There were 221 significant organisms identified. Table 2 shows the frequency of uropathogens detected by either Cult-Dip Plus, routine culture or both. As expected, E coli was the most frequently recovered pathogen. In all cases where a significant uropathogen was recovered by either Cult-Dip Plus or by routine culture but not by both, the corresponding method had mixed organisms and was not investigated further.

Table 3 shows the results of the MUG test for identification of E coli. Of the E coli isolates, 92% were MUG test positive compared with 25% of K pneumoniae and 20% of P mirabilis isolates recovered by Cult-Dip Plus. None of the remaining isolates were MUG test positive.

In total, 105 E coli isolates were recovered as significant uropathogens. Of these, 88 were recovered by both methods, eight by Cult-Dip Plus only and nine by routine culture only. Of the 99 E coli isolates recovered by Cult-Dip Plus, 96 underwent a MUG test (three were not viewed for fluorescence and were not analysed further) (table 3). Of the 96 tested, 88 (92%) were MUG test positive. Detection of fluorescence was similar for both media on the dip slide. Thirty one of the 99 isolates recovered by Cult-Dip Plus were identified by Vitek and 68 were identified by Bactident. Of the 68 isolates tested by Bactident, 64 (94%) were MUG test positive. Of the eight E coli isolates detected by Cult-Dip Plus only and which were MUG test negative, five were tested by Bactident and three were MUG test positive (see discussion). Overall, the Cult-Dip Plus MUG test had a sensitivity of 91.6% and a specificity of 95.2% and a positive predictive value of 93.6% for identifying E coli.

Of the 95 E coli isolates recovered by routine culture, 77 were tested by Bactident and 70 (91%) were MUG test positive (table 3). Of the 70 MUG test positive isolates, 63 (90%) were also positive by the Cult-Dip Plus MUG test. Of the seven remaining isolates, five were Cult-Dip Plus MUG test negative and the remaining two were untested. Of the 19 routine cultures that the Bactident MUG test were not performed on, 16 were Cult-Dip Plus MUG test positive and three were not tested.

Results

Of the 1022 urine samples analysed, 221 (21.6%) had significant findings (>10,000 cfu/ml and pure) by one method or the other; 181 (81.9%) were detected by both methods; 24 (10.9%) by the routine method only; and 16 (7.2%) by Cult-Dip Plus only. Table 1 shows the distribution of the data. With regard to insignificant (mixed with two or more species of micro-organisms or <10,000 cfu/ml) and negative results (no visible growth), 417 (40.8%) urine samples were negative by both methods; 344 (33.7%) had mixed or insignificant counts by both methods and of these, 162 (15.9%) had colony counts that differed between both methods (data not shown). Of the urine samples cultured by Cult-Dip Plus, 97 had <1000 cfu/ml; however, these were scored as no growth when the cut off was adjusted to ≥1000 cfu/ml for comparison with routine culture.

Discussion

The dip slide was introduced in 1967 and represented a further development of the dip-spoon method. It was originally seen as an inexpensive, easy to use and convenient system that could be used at the bedside by non-laboratory personnel and still provide reliable and clinically meaningful results. Many laboratories use dip slides as the method of choice for detecting uropathogens. Kennon and Soderdahl showed that the dip slide was a cost-effective alternative to conventional urine culture methodology.
Rosenberg et al. found that the sensitivity, specificity and positive predictive value of dip slide versus routine culture was 98.8%, 95.7% and 97.2%, respectively, and 97.0%, 98.3% and 98.3%, respectively, for the slide and urine culture device versus the calibrated loop routine culture method. Our findings of specificity, sensitivity and positive predictive values of 88.3%, 98.0% and 91.9%, respectively, are slightly lower than those reported by Rosenberg et al. This difference could be explained by the differences in the two dip slides used in these studies. Alternatively, it could be explained by the difference in urine specimens used in the evaluation: Rosenberg et al. prescreened their urine samples for catalase activity in order to increase the proportion of positive cultures tested and we did not. Rosenberg et al. state that evaluations using non-screened urine samples should be performed in addition to studies using prescreened urines.

The data showing significant findings detected in urine specimens by one method only (table 1) require further discussion. As previously stated, in all instances where one method (but not both) had significant findings, the corresponding method was scored as having mixed or insignificant findings. Some of these specimens may have been interpreted differently in another laboratory. Given that dip slides sample a larger volume of urine, they probably detect micro-organisms present in lower numbers (that is, contaminants) along with those associated with urinary tract infections. There is no universally accepted protocol for the interpretation of urine cultures. Rather, established guidelines are widely used; however, interpretation of these guidelines in some clinical situations may vary from one laboratory to another. Therefore, sensitivity and specificity of product evaluations as highlighted here may be different if different interpretative criteria are applied. Laboratories interested in changing their current methodology might best be served by performing evaluations of their own to determine performance of new methodology under their own interpretive criteria.

Ellner and Papachristos compared urine dip slides with routine culture and found that the urine dip slides gave equivalent results to those obtained by conventional culture. The percentage of specimens from their evaluations with significant (dip slide, culture: 18.6, 15.3), negative (40.3, 31.4) and insignificant (41.2, 43.3) findings was similar to the results from this current evaluation. Additionally, the percentage and overall distribution of the uropathogens detected in this study is similar to that of Ellner and Papachristos.

Our study showed that there were fewer urine samples with no growth and more with mixed or insignificant findings by Cult-Dip Plus than by routine culture. These findings are undoubtedly due to the fact that Cult-Dip Plus can detect ≥100 cfu/ml compared with ≥1000 cfu/ml by routine culture. However, adjusting the cut off for Cult-Dip Plus changes the percentage of specimens with mixed or insignificant findings giving 37.4% for both Cult-Dip Plus and routine culture.

B-glucuronidase activity in the genera of
Escherichia, Salmonella and Shigella was described by Kilian and Bолов in 1967.6 Feng and Hartman14 and Hansen and Yousaowsky15 used B-glucuronidase activity to identify isolates of E. coli from water and urine cultures, respectively. Trepeta and Edberg added the fluorogenic substrate 4-methylumbelliferyl-B-D-glucuronide to agar plates and were then able to detect E. coli by ultraviolet light fluorescence of 4-methylumbelliferon following hydrolysis by B-glucuronidase.

Delisle and Ley1 and Heizmann et al. found that 89.5% and 90.5%, respectively, of E. coli isolates were positive for B-glucuronidase activity. In both of these studies the substrate for detection of B-glucuronidase was incorporated directly into solid media. Our results (91.6%) are consistent with their results. It would be unlikely that 100% of E. coli isolates would be MUG test positive as previous reports indicate that only 94–97% of isolates were positive for this enzyme. Our finding of three E. coli isolates that were negative for fluorescence (MUG test negative) by Cult-Dip Plus were subsequently MUG test positive by Bactident can be explained by previous studies showing that both pH and colour change during lactose fermentation can suppress fluorescence.18 19 We have found that there was considerable variability in both the presence and intensity of fluorescence produced by micro-organisms present on the dipstick. This problem is easily overcome by the addition of 1 N NaOH to the colonies of microorganisms. Changing the pH from acidic to basic intensifies the fluorescence, making detection much easier. It is possible, therefore, that the three E. coli isolates that were negative for fluorescence on the Cult-Dip Plus and MUG test positive by Bactident were, in fact, isolates that were falsely negative due to failure to intensify fluorescence by adjusting the pH.

In conclusion, urine dip slides are easy to use, reliable and a cost-effective alternative to routine culture media. Ellner and Papachristos compared urine dip slides with routine culture and found that the urine dip slides gave equivalent results to those obtained by conventional culture. The percentage of specimens from their evaluations with significant (dip slide, culture: 18.6, 15.3), negative (40.3, 31.4) and insignificant (41.2, 43.3) findings was similar to the results from this current evaluation. Additionally, the percentage and overall distribution of the uropathogens detected in this study is similar to that of Ellner and Papachristos.

Our study showed that there were fewer urine samples with no growth and more with mixed or insignificant findings by Cult-Dip Plus than by routine culture. These findings are undoubtedly due to the fact that Cult-Dip Plus can detect ≥100 cfu/ml compared with ≥1000 cfu/ml by routine culture. However, adjusting the cut off for Cult-Dip Plus changes the percentage of specimens with mixed or insignificant findings giving 37.4% for both Cult-Dip Plus and routine culture.

B-glucuronidase activity in the genera of
Escherichia, Salmonella and Shigella was described by Kilian and Bолов in 1967.6 Feng and Hartman14 and Hansen and Yousaowsky15 used B-glucuronidase activity to identify isolates of E. coli from water and urine cultures, respectively. Trepeta and Edberg added the fluorogenic substrate 4-methylumbelliferyl-B-D-glucuronide to agar plates and were then able to detect E. coli by ultraviolet light fluorescence of 4-methylumbelliferon following hydrolysis by B-glucuronidase.

Delisle and Ley1 and Heizmann et al. found that 89.5% and 90.5%, respectively, of E. coli isolates were positive for B-glucuronidase activity. In both of these studies the substrate for detection of B-glucuronidase was incorporated directly into solid media. Our results (91.6%) are consistent with their results. It would be unlikely that 100% of E. coli isolates would be MUG test positive as previous reports indicate that only 94–97% of isolates were positive for this enzyme. Our finding of three E. coli isolates that were negative for fluorescence (MUG test negative) by Cult-Dip Plus were subsequently MUG test positive by Bactident can be explained by previous studies showing that both pH and colour change during lactose fermentation can suppress fluorescence.18 19 We have found that there was considerable variability in both the presence and intensity of fluorescence produced by micro-organisms present on the dipstick. This problem is easily overcome by the addition of 1 N NaOH to the colonies of microorganisms. Changing the pH from acidic to basic intensifies the fluorescence, making detection much easier. It is possible, therefore, that the three E. coli isolates that were negative for fluorescence on the Cult-Dip Plus and MUG test positive by Bactident were, in fact, isolates that were falsely negative due to failure to intensify fluorescence by adjusting the pH.

In conclusion, urine dip slides are easy to use, reliable and a cost-effective alternative to routine culture media. Ellner and Papachristos compared urine dip slides with routine culture and found that the urine dip slides gave equivalent results to those obtained by conventional culture. The percentage of specimens from their evaluations with significant (dip slide, culture: 18.6, 15.3), negative (40.3, 31.4) and insignificant (41.2, 43.3) findings was similar to the results from this current evaluation. Additionally, the percentage and overall distribution of the uropathogens detected in this study is similar to that of Ellner and Papachristos.

Our study showed that there were fewer urine samples with no growth and more with mixed or insignificant findings by Cult-Dip Plus than by routine culture. These findings are undoubtedly due to the fact that Cult-Dip Plus can detect ≥100 cfu/ml compared with ≥1000 cfu/ml by routine culture. However, adjusting the cut off for Cult-Dip Plus changes the percentage of specimens with mixed or insignificant findings giving 37.4% for both Cult-Dip Plus and routine culture.
indole test to be performed, thereby expanding the utility of this product.

Bacident is a two hour test for identifying E coli. It consists of the MUG test and an indole test. In our laboratory only those micro-organisms with a colonial appearance suggestive of E coli are processed by this method. A spot indole test is performed before using this method. In the results section it is noted that not all E coli isolates recovered by routine culture were tested by Bacident. These isolates would not have been tested because they were either spot indole negative or did not have a typical colonial appearance, or both.

We thank D Leciuk for clerical assistance.

These findings were presented, in part, at the 60th Conjoint Meeting of Infectious Diseases, Toronto, Ontario, Canada, December 2, 1992; Abstract #T-3.

Evaluation of the Cult-Dip Plus dip slide method for urinary tract infection.

J M Blondeau, Y Yaschuk, D Galenzoski, D Hrubok, M Isaacson, L Lee, H Link and L Walshaw

doi: 10.1136/jcp.48.8.710

Updated information and services can be found at:
http://jcp.bmj.com/content/48/8/710

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/