Pancreatoblastoma: a histochemical and immunohistochemical analysis

Chen Hua, Xu Ke Shu, Chen Lei

Abstract
A case of pancreatoblastoma arising in a five year old girl was analysed using histochemical and immunohistochemical methods. The tumour was composed of tubular gland-like structures, squamoid components and some small round cells surrounding tubular structures. The cytoplasm of the small round cells and a few of the squamoid cells was positive on staining with Grimelius argyrophil stain. Immunohistochemically, tumour tissue was positive for neuron specific enolase. The cytoplasm of some of the small round cells was positive for insulin, glucagon, somatostatin, pancreatic polypeptide, thyroid stimulating hormone, follicle stimulating hormone, and neurotensin. These results suggest that this tumour arose from primitive multipotential stem cells, showing exocrine and neuroendocrine differentiation.

(J Clin Pathol 1996;49:952–954)

Keywords: pancreatoblastoma, pancreatic neoplasm, immunohistochemistry, neuroendocrine cells.

Pancreatoblastoma or infantile carcinoma of the pancreas is a very rare primary pancreatic malignancy in infants and children. In 1971, Frable et al. reported a case of infantile carcinoma of the pancreas. Horie et al. in an attempt to account for the histological features of this tumour, suggested the term pancreatoblastoma. This tumour has been studied extensively using immunohistochemical techniques and electron microscopy. Several authors have suggested that pancreatoblastomas contain islet cell components. Here, we report a case of pancreatoblastoma in a five year old girl and discuss the possible histogenesis of this unusual neoplasm.

Case report
The patient, a five year old girl, was admitted to Qingdao Municipal Hospital in 1987 complaining of abdominal pain. The patient had had a poor appetite for the previous three months. She had diarrhoea and vomited three times during the three days prior to admission. Her past medical history was uninformative. On admission, her temperature was 36.5°C, respiratory rate was 28, pulse 112, and blood pressure 110/70. Physical examination revealed an 8 x 6 cm, fixed, firm and tender mass in the left upper abdomen. The edge of the liver was palpable 1.5 cm below the right costal margin. The spleen was not palpable. The patient’s lymph nodes were not swollen.

Table 1 shows the results of the initial laboratory tests. Catecholamine qualitative analysis was negative. A B pattern ultrasonogram showed a 9.8 x 5.7 x 5.2 cm mass with lobules connected to the tail of the pancreas.

The mass and the surrounding pancreatic tissue were excised. The tumour had been located at the tail of the pancreas and had been connected to the transverse colon.

Methods
Tumour tissue was fixed in 10% formalin and embedded in paraffin wax. Paraffin wax sections were stained with haematoxylin and eosin, periodic acid-Schiff (PAS) with and without prior digestion with diastase, Masson’s trichrome, Grimelius argyrophil stain, and Masson-Fontana stain. Sections were stained immunohistochemically using the APAAP method. Rabbit antisera were used to detect expression of human chromogranin A, insulin, gastrin, glucagon, somatostatin, pancreatic polypeptide, adrenocorticotropic hormone

Table 2 Antibodies used with dilutions and sources

Source: Dako, Carpinteria, California, USA.
Pancreatoblastoma: a histochemical and immunohistochemical analysis

(ACTH), thyroid stimulating hormone (TSH), neuron specific enolase (NSE), follicle stimulating hormone (FSH), luteinising hormone, neurotensin, and calcitonin (table 2). Mouse monoclonal antibodies were used to detect expression of serotonin (5-HT), carcinoembryonic antigen (CEA), cytokeratin, S100 protein, and neurofilament. Appropriate positive and negative controls were used.

Pathological findings
GROSS PATHOLOGY
The mass was a 10 × 8 × 6 cm encapsulated tumour with a smooth surface, weighing 280 g. The cut surface revealed white, tan and yellow, medium hard and partially necrotic tissue.

LIGHT MICROSCOPY
Tumour tissue was separated by dense fibrous stroma and contained organoid lobules. Some areas were necrotic. The lobules were composed of tubular gland-like structures and squamoid components (fig 1). Partial gland-like structures formed lumina. The cells forming a tubular pattern had indistinct cell borders and eosinophilic cytoplasm. They had moderately round nuclei with coarse clumped chromatin and distinct borders. The squamoid cells were elongated with abundant eosinophilic cytoplasm. Adjacent to the tubular structures were small round or polygonal cells, with hyperchromatic nuclei and finely dispersed chromatin. There was a transition between small round cells and gland-like cells. Mitotic figures were frequent. The tumour tissue invaded the connective tissue of the capsule and the surrounding pancreatic tissue (fig 2). The pancreatic tissue showed increased fibrous stroma. Pancreatic acini showed extensive atrophy. PAS positive, diastase resistant granules were seen in acinar structures. The cytoplasm of the small round cells and a few of the squamoid cells was positive on staining with Grimelius argyrophil stain.

IMMUNOHISTOCHEMICAL STAINING
The tumour tissue displayed fine granular cytoplasmic deposition of NSE in small round cells and in areas of the squamoid components. The cytoplasm of the small round cells was positive for insulin, glucagon, somatostatin, pancreatin polypeptide, TSH, FSH, and neurotensin. The tubular structures were weakly positive for CEA. Staining with all of the other antibodies was negative.

Discussion
On routine light microscopy, the pancreatoblastoma seemed to be composed of organoid structures, foci of squamoid components and gland-like structures. Several other investigators found the acinar structures with PAS positive granules, later confirmed to be trypsinogen. Benjamin and Wright reported that their tumour contained α-1-antitrypsin and speculated that this might be a marker of acinar differentiation. Taxy examined a pancreatoblastoma using electron microscopy, but was unable to demonstrate the presence of an islet cell component. John et al detected insulin expression by immunoperoxidase and ultrastructural analyses. We found that the small round cells expressed insulin, glucagon, somatostatin, pancreatin polypeptide, TSH, FSH, and neurotensin. We confirmed that the pancreatoblastoma not only had an islet cell component but also contained other endocrine components.

Dayal and O'Briain suggested that the exocrine and endocrine pancreatic tissue in pancreatoblastoma originate from tubi of pancreas, pancreatic exocrine components from the tubular end, and pancreatic endocrine components from the paratub. We agree that pancreatoblastoma is an embryonal neoplasm arising from multipotential stem cells that mimic the embryogenesis of the pancreas with acinar and endocrine cells developing from primitive ducts.

Using immunohistochemistry we demonstrated the expression of TSH, FSH and...
neurotensin by tumour cells. We believe that these are primitive neoplastic endocrine components. During the differentiation process, these cells synthesise and secrete these hormones abnormally. These results provide further evidence that pancreatoblastoma is an embryonal neoplasm arising from multipotential stem cells.

We reviewed the literature and found 14 cases of pancreatoblastoma with adequate morphological description of the lesion. The ages of the patients ranged from 15 months to 13 years (average 5.5 years). More boys were affected than girls. Tumour were generally large (average 10.2 cm). There was no evidence of metastasis prior to surgery in any of the patients. Two died. The longest follow up period was 16 years.

Our patient was followed for five years and there is no evidence of recurrence. As the tumour was encapsulated, it could be removed completely and had more favourable prognosis than pancreatic carcinoma in adults.

In conclusion, we believe that pancreatoblastoma is a unique primary pancreatic neoplasm in infants and children. This tumour, which arises from primitive multipotential stem cells, has better prognosis than pancreatic carcinomas in adults.

The authors thank Dr Chen Jia Jun, Department of Physiology, Qingdao Medical College, for providing the antisera.

Pancreatoblastoma: a histochemical and immunohistochemical analysis.

C Hua, X K Shu and C Lei

doi: 10.1136/jcp.49.11.952

Updated information and services can be found at:
http://jcp.bmj.com/content/49/11/952

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/