Histology of chronic gastritis with and without duodenitis in patients with *Helicobacter pylori* infection

P S Phull, A B Price, J Stephens, B J Rathbone, M R Jacyna

Abstract

Aim—To compare the histological characteristics of *Helicobacter pylori* positive chronic gastritis in patients with and without associated duodenitis.

Methods—Gastric mucosal biopsy specimens were obtained from patients undergoing endoscopy for dyspepsia. Severity of gastritis and density of *H pylori* infection were graded according to the Sydney system.

Results—Of the 69 patients studied, 15 had normal histology, 22 had chronic gastritis only (77.3% *H pylori* positive), 21 had duodenitis (90.5% *H pylori* positive), and 11 had other diagnoses. In the *H pylori* positive patients, the median gastritis score was higher in the duodenitis group (6, range 3–9) than in the chronic gastritis only group (5, range 2–8), because of greater neutrophil activity scores in patients with duodenitis (median score 2 v 1). There were no differences in the density of *H pylori* infection, inflammation, atrophy, or intestinal metaplasia between patients with chronic gastritis only and those with duodenitis.

Conclusions—These results suggest that *H pylori* positive patients with duodenitis have a more severe form of gastritis than those without associated duodenal inflammation. This is because of increased neutrophil activity, which seems to be independent of the density of *H pylori* infection.

Keywords: duodenitis, *Helicobacter pylori*, gastritis.

Helicobacter pylori infection is the major cause of chronic gastritis, and is associated with more than 90% of duodenal ulcers. Eradication of the organism dramatically alters the natural history of duodenal ulcer disease by preventing relapse. However, it is not clear why only some subjects with chronic gastritis develop duodenal ulceration. Although the close relation between *H pylori* and the gastroduodenal mucosa has been studied extensively, there is little information on the histology of the gastric mucosa in patients with and without associated duodenal inflammation/ulceration. Duodenitis is almost invariably present in duodenal ulceration and is believed to be part of the same pathophysiological spectrum.

Methods

The study was approved by the Northwick Park Hospital ethical committee. Patients undergoing routine upper gastrointestinal endoscopy for dyspepsia were invited to participate in the study and written informed consent was obtained. Patients were excluded if there was a history of therapy with H2-receptor antagonists, proton-pump inhibitors or antibiotics in the preceding four weeks, or if there was endoscopic evidence of oesophagitis or malignancy. All of the endoscopies were performed by a single operator (PSP) using an Olympus Q20 gastroscope. Two mucosal biopsy specimens were taken from each site: the gastric corpus (anterior and posterior wall), the antrum (within 3 cm of the pylorus), as well as the first part of the duodenum.

The gastroduodenal biopsy specimens were examined histologically by a single pathologist (ABP), who was unaware of the endoscopic findings. Biopsy tissue, fixed in 10% formalin and embedded in paraffin wax, was sectioned at 3 μm and stained with haematoxylin and eosin, as well as a cresyl-fast violet stain for *H pylori*. Gastritis was graded according to the Sydney System. This grades the severity of inflammation, activity (the degree of polymorph neutrophil infiltration), atrophy, and intestinal metaplasia on a scale from 0 to 3. A subsequent “gastritis score” for each biopsy site was obtained by combining the scores for the four individual characteristics (maximum possible score = 12). The “total gastritis score” was obtained by combining the gastritis scores for the corpus and antrum (maximum possible score = 24). In accordance with the Sydney system, the density of *H pylori* infection was also graded semiquantitatively on a scale from 0 to 3. Duodenitis was graded on a scale from 0 to 3, according to Whitehead. Patients with special forms of gastritis, gastric ulceration or those with malignancy were excluded. For analysis, the patients were divided into three groups: (1) normal (gastritis score = 0, duodenitis score = 0); (2) chronic gastritis only (gastritis score 1 or more, duodenitis score = 0); and (3) duodenitis (duodenitis score 1 or more).

Statistical analysis was performed using the χ² test for comparing proportions between groups. The Mann–Whitney U test for non-parametric data was used to compare the gastritis scores between groups. A p value of less than 0.05 was regarded as significant.

Results

Complete sets of biopsy specimens were available for 69 patients. Eleven patients were excluded from the analyses (one with gastric cancer, one with gastric ulcer, eight with re-
active gastritis, and one with lymphocytic gastritis). Table 1 summarises the demographic characteristics of the remaining 58 patients. Fifteen of these patients had normal gastroduodenal histology, 22 had chronic gastritis only, and 21 had duodenal inflammation. Seventeen (77.3%) of the patients with chronic gastritis only were *H pylori* positive compared with 19 (90.5%) of the patients with duodenitis. All of the patients in the duodenitis group (group 3) had an associated chronic gastritis except for the two *H pylori* negative patients who had normal gastric histology. The following results refer only to *H pylori* positive patients.

GASTRIC HISTOPATHOLOGY

Examination of the topography of the chronic gastritis did not reveal any significant differences (χ^2 test) between patients with chronic gastritis only and those with duodenitis (fig 1), with all patients having some degree of antral involvement.

Analysis of the gastritis scores (table 2) revealed that patients with duodenitis had a more severe form of gastric inflammation than those with chronic gastritis alone. The total gastritis score was significantly higher in the duodenitis group compared with the chronic gastritis group ($p<0.05$, Mann–Whitney U test). This was attributable to greater neutrophil infiltration into the gastric mucosa in patients with duodenitis, with the activity scores being significantly higher than in the chronic gastritis only group (group 2) ($p<0.02$, Mann–Whitney U test). There were no significant differences between the groups in the density of *H pylori* infection, inflammation, atrophy, or intestinal metaplasia.

The presence of lymphoid hyperplasia (lymphoid follicles and lymphoid aggregates) was noted in the gastric mucosa of 14 (73.7%) of the 19 patients in the duodenitis group compared with seven (41.2%) of the 17 patients in the chronic gastritis only group ($\chi^2=3.9$, $DF=1$, $p<0.05$). Lymphoid hyperplasia was mainly located in the antrum in 95.2% of the cases. Interestingly, lymphoid hyperplasia was detected in two (13.3%) of the 15 normal patients.

DUODENAL HISTOPATHOLOGY

The presence of gastric metaplasia of the duodenal mucosa was noted in 12 (63.2%) of 19 patients from the duodenitis group compared with four (23.5%) of 17 patients with chronic gastritis only ($\chi^2=5.7$, $DF=1$, $p<0.02$). Duodenal *H pylori* colonisation was only seen in patients with duodenitis. Six (31.6%) of 19 patients in this group had organisms detected in the duodenum; all of these patients had gastric metaplasia and gastric *H pylori* infection.

Discussion

It has been known for many years that chronic gastritis, particularly affecting the antrum, is found in association with most cases of duodenal inflammation and ulceration.13 Furthermore, this form of chronic gastritis increases the risk of developing duodenal ulceration by over 10-fold over a 10 year period.14 Since the discovery of the bacterium *H pylori*, it has been recognised that infection with this organism is the major cause of chronic gastritis.1 It is now clear that *H pylori* also plays a critical role in duodenal ulcer disease. Over 90% of duodenal ulcer cases have an *H pylori* associated

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Demographic characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal (n = 15)</td>
</tr>
<tr>
<td>Mean age (years; range)</td>
<td>45 (26–80)</td>
</tr>
<tr>
<td>Men</td>
<td>5 (33.3%)</td>
</tr>
<tr>
<td>Smokers</td>
<td>3 (20%)</td>
</tr>
</tbody>
</table>

![Figure 1 Topography of chronic gastritis in H pylori positive patients.](image)
Association between chronic gastritis, duodenitis and H pylori

Table 2 Histological scores (median, range)

<table>
<thead>
<tr>
<th></th>
<th>Chronic gastritis (n=17)</th>
<th>Duodenitis (n=19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflammation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corpus</td>
<td>(0–2)</td>
<td>1 (0–2)</td>
</tr>
<tr>
<td>Antrum</td>
<td>2 (1–3)</td>
<td>2 (1–3)</td>
</tr>
<tr>
<td>Total</td>
<td>3 (1–4)</td>
<td>3 (1–5)</td>
</tr>
<tr>
<td>Activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corpus</td>
<td>(0–1)*</td>
<td>1 (0–2)*</td>
</tr>
<tr>
<td>Antrum</td>
<td>(0–2)*</td>
<td>1 (0–2)*</td>
</tr>
<tr>
<td>Total</td>
<td>(1–3)*</td>
<td>2 (1–3)*</td>
</tr>
<tr>
<td>Atrophy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corpus</td>
<td>(0–1)</td>
<td>0 (0–3)</td>
</tr>
<tr>
<td>Antrum</td>
<td>0 (0–2)</td>
<td>1 (0–2)</td>
</tr>
<tr>
<td>Total</td>
<td>1 (0–3)</td>
<td>0 (0–3)</td>
</tr>
<tr>
<td>Intestinal metaplasia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corpus</td>
<td>(0–1)</td>
<td>0 (0–1)</td>
</tr>
<tr>
<td>Antrum</td>
<td>0 (0–1)</td>
<td>0 (0–2)</td>
</tr>
<tr>
<td>Total</td>
<td>0 (0–1)</td>
<td>0 (0–2)</td>
</tr>
<tr>
<td>Gastritis score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corpus</td>
<td>1 (0–5)</td>
<td>2 (0–6)</td>
</tr>
<tr>
<td>Antrum</td>
<td>3 (1–7)</td>
<td>4 (2–7)</td>
</tr>
<tr>
<td>Total</td>
<td>5 (2–8)*</td>
<td>6 (3–9)*</td>
</tr>
<tr>
<td>H pylori density</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corpus</td>
<td>1 (0–2)</td>
<td>1 (0–2)</td>
</tr>
<tr>
<td>Antrum</td>
<td>2 (1–3)</td>
<td>2 (1–3)</td>
</tr>
<tr>
<td>Total</td>
<td>3 (1–5)</td>
<td>3 (1–4)</td>
</tr>
<tr>
<td>Duodenitis score</td>
<td>0 (0)</td>
<td>1 (1–3)</td>
</tr>
</tbody>
</table>

* p<0.05, † p<0.02 (Mann-Whitney U test).

denial ulceration when compared with those with either non-ulcer dyspepsia or gastritis only. However, in contrast to our results, both of these studies found higher H pylori density scores in the antrum of patients with duodenal ulceration. It is important to note that the results from these studies may not be directly comparable with those presented in this paper as duodenal histology was not used to categorise patients. It is possible that endoscopically normal cases with histological evidence of duodenitis may have been misclassified. A further explanation for the difference in our results may be that as the overall severity of chronic gastritis in our cohort of patients was relatively mild, these patients may not be representative of H pylori positive subjects in other countries. Lastly, the possibility cannot be entirely excluded that the number of patients in our study may not have been large enough to detect a small difference in H pylori density between the two groups of patients.

The prevalence of gastric metaplasia in our dyspeptic patients was similar to that reported by other groups. We have also shown that the incidence of gastric metaplasia is higher in patients with duodenitis. In this study, colonisation of the duodenum by H pylori was seen only in the duodenitis group. These findings are in agreement with previously published work (reviewed by Wyatt), which suggests that gastric metaplasia develops as a response to the presence of an increased gastric acid load in the duodenum. The presence of gastric metaplasia allows H pylori to colonise the duodenum, as the organism can only colonise gastric-type mucosa. It is interesting to speculate whether the patients with chronic gastritis and gastric metaplasia, but without duodenitis, will go on to develop duodenal ulceration or have had ulceration in the past and therefore represent a high-risk group.

Infection of the gastric mucosa with H pylori elicits a complex inflammatory and immunological response. Lymphoid hyperplasia has been noted in H pylori gastritis by other workers, with a higher prevalence in the antrum than the corpus. The proportion of cases seen with lymphoid hyperplasia correlated with the severity of gastritis and density of H pylori infection. The results of our study confirm the higher prevalence of lymphoid hyperplasia in H pylori infection and also the greater antral involvement. Our results also demonstrate a higher prevalence of lymphoid hyperplasia in patients with duodenitis than in those with chronic gastritis alone; this seemed to be independent of the density of H pylori infection. These results are in agreement with those reported by Genta et al. It is likely that the higher prevalence of lymphoid hyperplasia in patients with duodenitis is a consequence of the more severe inflammatory and neutrophil response seen in these patients.

Although host factors are also likely to be of importance in determining which patients with H pylori positive chronic gastritis develop duodenal ulceration, recent work has suggested that some strains of H pylori may be more chronic gastritis; eradication of the organism dramatically alters the natural history of the disease by preventing further relapse.
380
Pylori positive patients with ulcers than those without. Production of the cytokinin by the vacA gene is associated with expression of a 120–128 kilodalton protein, which is a product of the cagA gene. A number of studies have demonstrated increased recognition of the 120 kilodalton CagA protein in patients with duodenal ulcer, compared with Pylori positive patients with chronic gastritis alone, in the gastric mucosa and in the serum. CagA positive strains of H pylori have been shown to induce greater production of pro-inflammatory cytokines than CagA negative strains. This may provide an explanation for the higher neutrophil activity that we have observed in the H pylori positive patients with duodenal ulcer compared with the H pylori positive patients with chronic gastritis alone.

In summary, we have demonstrated that H pylori positive patients with duodenal inflammation have a more severe form of chronic gastritis than those without associated duodenitis. This is because of an increase in the neutrophil activity, which seems to be independent of the density of H pylori infection. The results of this study are in agreement with published work, suggesting that H pylori positive patients with duodenal inflammation/ulceration represent a particular cohort in whom there is a more severe gastric inflammatory response to the infection. The strain of the organism may be a more important factor than the density of infection in determining the gastric inflammatory response to H pylori.

PSP is partly funded by a grant from Glaxo Group Research, UK.

Histology of chronic gastritis with and without duodenitis in patients with Helicobacter pylori infection.
P S Phull, A B Price, J Stephens, B J Rathbone and M R Jacyna

doi: 10.1136/jcp.49.5.377

Updated information and services can be found at:
http://jcp.bmj.com/content/49/5/377

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/