Correspondence

Neomycin blood agar as a selective medium for vancomycin resistant Enterococcus faecium

We read with interest the article by Chadwick and Oppenheim regarding the selective isolation of Enterococcus faecium and agree that further comparative studies of screening media are required for detection of vancomycin resistant enterococci (VRE) from clinical and environmental sources. Furthermore, we believe that an overall strategy for the isolation of these increasingly prevalent nosocomial pathogens should be developed.

Using cephalaxin arabinose agar (CAA), a medium developed for the selective isolation of E faecium, in association with a broth enrichment technique, we examined 92 swabs from 70 environmental sites and 22 rectal swabs during the investigation of a nosocomial outbreak on a renal unit. All swabs were plated directly onto CAA, and CAA containing 4 mg/l vancomycin (E Lilly). The swab was then placed into cephalaxin arabinose (CA) broth prepared by the addition of cephalaxin and arabinose to one litre of sterile brain heart infusion broth (Unipath). Plates were examined for E faecium, following 24 and 48 hours’ incubation at 37°C in air. CA broth was subcultured onto both of the above media following enrichment for 24 hours.

Thirty eight E faecium strains were isolated from 18 environmental and patient samples. Of these, 28 (74%) were vancomycin sensitive and 10 (26%) were vancomycin resistant. When the isolation of E faecium from direct culture and broth enrichment was compared, 16 strains (42%) were isolated on direct culture, and the remaining 22 strains (58%) were isolated from broth enrichment only. Of the 10 vancomycin resistant strains, only two (20%) were isolated on direct plating. It was interesting to note that vancomycin resistant strains often required 48 hours’ incubation to produce typical colonies. This delayed growth was presumably because of the time required for the induction of the Van B resistance phenotype as an outbreak strain. Our investigations show that the isolation rate of E faecium during nosocomial outbreaks may be seriously underestimated if a broth enrichment procedure is not used, as only 16 (42%) of 38 strains were isolated on direct culture. Moreover, only 20% of strains of VRE were isolated on direct culture. It is likely that the additional strains detected after broth enrichment were present in low numbers and would easily have been missed if the broth enrichment step was not used, regardless of the type of selective media used. This effect might, however, be compounded if a selective medium inhibitory to VRE was used without an enrichment stage.

In order to implement a successful infection control strategy it is essential that accurate information is available about the numbers of cases of clinical infection or colonisation, and the extent of any environmental contamination with VRE. Our study suggests that outbreak management based on results of screening exercises using only direct culture techniques may therefore be inappropriate.

We agree with Chadwick and Oppenheim that comparative studies of screening media are warranted, but also recommend the use of a broth enrichment step in association with an appropriate selective medium such as CAA for the isolation of VRE during the investigation of nosocomial outbreaks.

M FORD
FK GOULD
KE ORR
Microbiology Department,
Fremantle Hospital,
Fremantle Road,
High Heaton,
Newcastle upon Tyne NE7 7DN

Coronary artery dissection

Bateman et al describe an interesting spectrum of clinical presentation of spontaneous coronary artery dissection. Despite its rarity, the entity shows a striking constancy in the vessels involved and the presence of an inflammatory infiltrate rich in eosinophils. These features were also seen in a recent necropsy in our department. The patient, an obese 43 year old woman with no recent pregnancy, had a background of mild hypertension not requiring medical therapy. She complained of severe back pain one evening, and died the following morning. At necropsy, the heart weighed 400g. The left anterior descending coronary artery was occluded by thrombus from its origin, and a dissection, clearly visible grossly, extended the length of the artery. There was no atheroma, and histologically, no abnormal accumulations of mucin and no evidence of systemic vasculitis. No intimal tear was identified. Like cases 2 and 3 reported by Bateman et al, in which there was an interval between onset of symptoms and death, there was an adventitial inflammatory infiltrate with prominent eosinophilia. The dissection in our case was mostly between the media and adventitia, internal to the external elastic lamina, with small foci in the outer media. We have seen dissection in this location in a previously reported case of eosinophilic mediastinitis, as have others.1 It seems likely that it overlapped with the dissection in the outer third of the tunica media, and does not justify the description of "unusual" as suggested. Finally, increased awareness of this entity may mean that early presentation may result in salvage of some cases.

EE MOONEY
GSA MCDONALD
Department of Histopathology,
St James’ Hospital,
Trinity College,
Dublin, Ireland

Dr Bateman and Gallagher comment:
We read Drs Mooney and McDonald’s further report of spontaneous coronary artery dissection with interest. The intimal dissection in our first case remains unusual.1 However, their comments regarding the plane of dissection in our second and third cases are entirely justified. We accept that coronary artery dissection has been observed both within the outer tunica media and between the media and adventitia.2-4 Differences in the reported plane of dissection may result from sampling error. It is widely believed that spontaneous coronary artery dissection results from luminal blood entering the arterial wall via an intimal tear, although this feature is rarely identified at postmortem examination.1 Histological examination of coronary artery segments may therefore require dissection at varying levels within the tunica media as the blood flows towards the relatively impervious tunica adventitia.

Adventitial inflammatory cell infiltrates containing a high proportion of eosinophils remain a common feature of spontaneous coronary artery dissection, and their role has yet to be elucidated. Drs McDonald and Mooney suggested an intriguing association between a spontaneous coronary artery dissection and eosinophilic thyroiditis.3 The pathogenesis of spontaneous coronary artery dissection, particularly in patients in whom no associated factors are identified, remains an enigma.

Effects of interleukins on the proliferation and survival of chronic lymphocytic leukaemia cells

Mainou-Fowler et al report in their interesting study of the in vitro response of B chronic lymphocytic leukaemia (B-CLL) cells to interleukins that the effects of interleukin-4 (IL-4) on B-CLL cell lines are heterogeneous. They show that "IL-4 enhanced cell proliferation by . . . 235% (123-400%) in four of 12 B-CLL cases" and they propose that this variability in response is a result of variable B-CLL cell maturity and defective expression of receptors for growth factors.

We suggest that their observations may be a result of heterogeneous expression of the IL-4 receptor (IL-4R), as we have shown that B-CLL cells express IL-4R, but at varying levels. We report evidence of the expression of two species of high affinity receptor by these cells.1 Briefly, the presence of high affinity IL-4R was determined by1 labelled IL-4 binding and Scatchard analysis using MLA-144 cells as a positive control.2 While a high affinity IL-4R was detected in all six samples examined, there was evidence in some cases of expression of a distinct, and previously unreported, high affinity IL-4R. Thus, four of six samples expressed the conventional high affinity IL-4R, Kd 17-95 pM, which was of similar affinity to the IL-4R expressed by MLA-144, Kd 22-33 pM, and two of six samples expressed a high affinity receptor, Kd 293-549 pM. The IL-4R was initially thought to be composed

Dr Bateman and Gallagher comment:
We read Drs Mooney and McDonald’s further report of spontaneous coronary artery dissection with interest. The intimal dissection in our first case remains unusual. However, their comments regarding the plane of dissection in our second and third cases are entirely justified. We accept that coronary artery dissection has been observed both within the outer tunica media and between the media and adventitia. Differences in the reported plane of dissection may result from sampling error. It is widely believed that spontaneous coronary artery dissection results from luminal blood entering the arterial wall via an intimal tear, although this feature is rarely identified at postmortem examination. Histological examination of coronary artery segments may therefore require dissection at varying levels within the tunica media as the blood flows towards the relatively impervious tunica adventitia.

Adventitial inflammatory cell infiltrates containing a high proportion of eosinophils remain a common feature of spontaneous coronary artery dissection, and their role has yet to be elucidated. Drs McDonald and Mooney suggested an intriguing association between a spontaneous coronary artery dissection and eosinophilic thyroiditis. The pathogenesis of spontaneous coronary artery dissection, particularly in patients in whom no associated factors are identified, remains an enigma.

Effects of interleukins on the proliferation and survival of chronic lymphocytic leukaemia cells

Mainou-Fowler et al report in their interesting study of the in vitro response of B chronic lymphocytic leukaemia (B-CLL) cells to interleukins that the effects of interleukin-4 (IL-4) on B-CLL cell lines are heterogeneous. They show that "IL-4 enhanced cell proliferation by . . . 235% (123-400%) in four of 12 B-CLL cases" and they propose that this variability in response is a result of variable B-CLL cell maturity and defective expression of receptors for growth factors.

We suggest that their observations may be a result of heterogeneous expression of the IL-4 receptor (IL-4R), as we have shown that B-CLL cells express IL-4R, but at varying levels. We report evidence of the expression of two species of high affinity receptor by these cells. Briefly, the presence of high affinity IL-4R was determined by labelled IL-4 binding and Scatchard analysis using MLA-144 cells as a positive control. While a high affinity IL-4R was detected in all six samples examined, there was evidence in some cases of expression of a distinct, and previously unreported, high affinity IL-4R. Thus, four of six samples expressed the conventional high affinity IL-4R, Kd 17-95 pM, which was of similar affinity to the IL-4R expressed by MLA-144, Kd 22-33 pM, and two of six samples expressed a high affinity receptor, Kd 293-549 pM. The IL-4R was initially thought to be composed
Coronary artery dissection.

E E Mooney and G S McDonald

doi: 10.1136/jcp.49.5.437-b

Updated information and services can be found at:
http://jcp.bmj.com/content/49/5/437.2.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/