in 10 risk of intestinal lymphoma in a newly diagnosed patient with coeliac disease.10 Exactly how and why coeliac disease is associated with an increased risk of lymphomatous and carcinomatous change remains unknown. Several explanations have been put forward. The mucosal damage in coeliac disease may make the small intestine more permeable to environmental carcinogens which, with associated malabsorptive vitamin A deficiency and increased vulnerability to oxidative injury, would enhance carcinogenic change. Known predisposing factors for the development of small intestinal adenocarcinoma include Crohn’s disease, adenomatous polyyps and Peutz-Jeghers’s syndrome.4 Perzin et al.11 reported that 23 of 51 cases of small intestinal adenocarcinoma had evidence of adenoma and carcinoma in the same lesion. Survival is dependent on the presence or absence of nodal involvement at presentation. Five year survival with node negative disease is 68\%, while the overall figure varies from 15 to 20\%.12 Thus, as the prognosis is not uniformly poor and some patients are potentially curable by total resection (as in patient 2 in the present paper), limiting postoperative morbidity and recognising potential complications becomes very important. Clinically unmasked coeliac disease complicating Whipple’s resection has not been described before and these two cases illustrate the importance of early diagnosis and dietary intervention prior to surgery. Previous cases of failure to thrive and weight loss following Whipple’s resection may be simply put down to the effects of small bowel resection, pancreatic insufficiency, tumour progression, or early recurrence. Underlying coeliac disease should also be considered and the tumour-free mucosal margins carefully inspected.

Mixed low grade and high grade endometrial stromal sarcoma of uterus: differences on immunohistochemistry and chromosome in situ hybridisation

A N-Y Cheung, W-F Ng, L-P Chung, U-S Khoo

\textbf{Abstract}

A case of a 64 year old woman with a tumour of the uterus is reported. The patient presented with postmenopausal bleeding and subsequently underwent total hysterectomy and bilateral salpingo-oophorectomy. Sections of the tumour showed a low grade endometrial stromal sarcoma coexisting with areas consistent with high grade sarcoma. The sarcoma cells, in both the low and high grade areas, were positive for vimentin and negative for desmin and cytokeratin on immunohistochemistry. While the sarcoma cells in the low grade region showed immunoreactivity for oestrogen and progesterone receptors, those in the high grade region did not. Using chromosome in situ hybridisation, the low grade portion of the sarcoma was diploid for chromosomes X, 11, 12, and 17, whereas the more anaplastic areas were aneuploid for these chromosomes. This case may represent an example of high grade endometrial stromal sarcoma arising by dedifferentiation from a low grade stromal sarcoma. Adequate sampling is important in identifying such anaplastic changes as the origin of the tumour will affect patient management.

Keywords: endometrial stromal sarcoma, dedifferentiation.

Mixed low and high grade endometrial stromal sarcoma of uterus

Endometrial stromal neoplasms, including stromal nodules and low and high grade stromal sarcomas, have different architectural and cytological features and clinical behaviour. They also vary with respect to their response to treatment. Here, we report a case of uterine high grade stromal sarcoma coexisting with, and probably arising from, adjacent low grade endometrial stromal sarcoma. Unlike soft tissue tumours, tumour dedifferentiation has rarely been reported in uterine stromal sarcomas. Comparative studies of steroid hormone receptor expression and cytogenetic analysis have not been described previously in such cases.

Case report

A 57 year old woman, with a long history of primary infertility, presented with postmenopausal bleeding of two months' duration. The patient's uterus was enlarged on physical examination. An endometrial aspirate yielded insufficient material for diagnosis. A total hysterectomy and bilateral salpingo-oophorectomy were carried out subsequently.

The uterus weighed 240 g and its anterior wall was thickened by an ill defined tumour mass, 4 cm diameter, which completely obliterated the endometrial cavity. Sectioning revealed whitish tumour tissue with patchy necrosis. The patient's ovaries and fallopian tubes were unaffected.

Most sections of the tumour mass showed monotonous sheets of cells traversed by ramifying small vessels. The tumour cells had scanty cytoplasm and ovoid nuclei resembling those of endometrial stromal cells. The mitotic count in these areas was about three per 10 high power fields (hpf). Vascular permeation was present. Epithelioid differentiation in the form of fine trabecular cords was present focally. Therefore, the features of the major portion of the tumour were those of a low grade endometrial sarcoma. Tumour close to the endometrial surface showed foci with obvious anaplastic changes. The tumour cells in these more anaplastic foci were large and pleomorphic with large hyperchromatic nuclei and prominent nucleoli. The mitotic count was about 18/10 hpf. Heterologous elements could not be detected. The features in these foci were consistent with a high grade stromal sarcoma.

An endometrial stromal sarcoma with both low and high grade features was diagnosed (fig 1). The patient received postoperative pelvic irradiation. She is well 18 months after treatment.

IMMUNOHISTOCHEMISTRY

Standard immunohistochemical studies were performed on formalin fixed, paraffin wax embedded tissue sections using the Streptavidin biotin and diaminobenzidine antiperoxidase technique (Dako, Glostrup, Denmark). Antibodies used were directed against desmin (Dako), vimentin (Dako), CAM 5.2 (Becton Dickinson, USA), Mak 6 cytokeratin (Triton, USA), AE1/3 (BioGenex, USA), oestrogen receptor (Dako), and progesterone receptor (Abbott Laboratories, UK). Paraffin wax sections were pretreated in a microwave oven (Bio-Rad H2500, USA) before being stained for oestrogen and progesterone receptors.

The tumour cells in both the low and high grade regions were positive for vimentin but negative for the cytokeratins and desmin, supporting the histological diagnosis of endometrial stromal sarcoma. The low grade portion of the sarcoma showed immunoreactivity for both oestrogen and progesterone receptors while the high grade sarcoma was negative for both hormone receptors.

CHROMOSOME IN SITU HYBRIDISATION

The chromosome in situ hybridisation method used in the present study was a modification of a protocol used for detecting chromosome copy numbers in routinely processed, paraffin wax tissue sections. Briefly, the DNA probes specific for chromosomes 11 (D11Z1), 12 (D12Z3), 17 (D17Z1) (American Type Cul-
Immunoreactivity for both oestrogen and progesterone receptors was noted in the part of the tumour with appearances histologically diagnostic of low grade stromal sarcoma. The high grade tumour was negative for both steroid hormone receptors. This is consistent with previous immunohistochemical studies by other investigators. Such differential expression of hormone receptors may explain differences in response to hormone therapy. It has been reported that complete or partial resolution of recurrent or metastatic low grade stromal sarcoma can occur after treatment with progestogens. These reports have led to the recommendation that women with low grade stromal sarcoma should be treated by total abdominal hysterectomy and bilateral salpingo-oophorectomy followed by long term progestogen therapy. Alternative treatment such as radiotherapy should only be considered for women whose neoplasms do not contain significant amounts of progestogen receptors or are resistant to progestogens. Progestogens are generally of little effect in patients with high grade stromal sarcoma. Surgery combined with preoperative or postoperative pelvic radiation is currently recommended as the most effective mode of treatment.

Using chromosome in situ hybridisation, we demonstrated that the low grade sarcoma in the present case was diploid for chromosomes X, 11, 12, and 17, whereas the high grade area was aneuploid. These findings are consistent with flow cytometry studies reported in the literature: stromal nodules and low grade sarcomas are generally diploid whereas most high grade stromal sarcomas are aneuploid. The prognostic significance of aneuploidy in uterine stromal sarcoma has not been defined conclusively as yet.

This case report also emphasises that adequate sampling is important in detecting anaplastic differentiation of an apparently low grade tumour, especially if the high grade tumour comprises a relatively small part of the tumour mass. Recognition of dedifferentiation significantly affects treatment and prognosis as the high grade portion of the stromal sarcoma is unlikely to respond to progestogen treatment.

This study was supported by a Committee on Research and Conference Grant from the University of Hong Kong (335-046-0061). The authors thank Dr Robert E Scully for confirming the histological diagnosis and Miss Vicky Tin for technical assistance.

Iododeoxyuridine labelling of S-phase fraction in fine needle aspirates from breast carcinomas

R A Maas, P F Bruning, A J Breedijk, J L Peterse

Abstract
The suitability of measuring the S-phase fraction in human breast cancer by labelling tumour cells from fine needle aspirates (FNAs) in vitro with iododeoxyuridine (IdU) was studied in 11 patients. The S-phase fraction was measured both in preoperative FNAs labelled in vitro with IdU, and in FNAs taken from the same tumour when surgically removed after intravenous administration of IdU. Frozen sections were also immunostained for incorporated IdU. The mean S-phase fraction measured in FNAs after in vitro or in vivo labelling and in sections after in vivo labelling was 4.0, 3.6, and 3.1, respectively. Results of in vitro and in vivo labelling of FNAs with IdU were similar. However, as the S-phase fraction in breast cancer is generally low, the variation between the different measurements is too large; therefore, the S-phase fraction is not a suitable indicator of response to treatment.

Keywords: breast cancer, fine needle aspirates, S-phase fraction.

Decreasing proliferative activity in tumours could be used as an early indication of response to systemic treatment. Changes in S-phase fraction as a measure of the proliferative activity could be monitored in sequentially obtained fine needle aspirates (FNAs). Immunostaining of iododeoxyuridine (IdU) incorporated into the DNA in the S-phase of the cell cycle offers a sensitive and specific method to assess S-phase fraction in FNAs from breast tumours. In vivo labelling of tumour cells requires the intravenous administration of IdU. Apart from the discomfort to the patient and costs involved, IdU administration may in turn cause further mutation. Moreover, the optimal timing of IdU administration varies from patient to patient. In vitro labelling with IdU is an attractive alternative.

Methods

IdU labelling
The S-phase fraction was measured in 17 patients with primary breast cancer. FNAs were taken from the primary breast carcinomas on the day before surgical removal of the tumour. Viable carcinoma cells were counted using the trypsin blue exclusion test. The tumour cells were labelled in vitro by being incubated at 37°C for two hours in DMEM culture medium (Gibco BRL, Breda, The Netherlands) containing 10% fetal calf serum (Gibco BRL) and 10 μM IdU (Sigma, Axel, The Netherlands). Approximately six hours before surgery the patients received an intravenous infusion of 100 mg IdU in 50 ml. Directly after surgical removal of the tumour a second FNA was taken for the analysis of in vivo labelling. FNAs were washed in phosphate buffered saline (PBS), resuspended in 70% alcohol and stored at 4°C pending analysis. Tumour tissue was snap frozen in liquid nitrogen until further processing.

Permission to administer IdU was obtained from the Medical Ethical Committee of the Antoni van Leeuwenhoekhuis. Informed consent was obtained from each patient.

Immunocytochemical staining for IdU

Cytospin preparations were prepared, dried and washed in PBS. After being washed in PBS, frozen tumour sections were treated in the same way as the cytopsin preparations. All samples were incubated in 95% formamide in PBS at 70°C for 45 minutes, washed three times for five minutes in 0.1 M Tris/HCl (pH 7.6) supplemented with 5% Tween 20, followed by a 10 minute wash in Tris/HCl (pH 7.6). After preincubation for 15 minutes in PBS supplemented with 0.5% Tween 20, 0.1% bovine serum albumin (BSA) and 10% normal rabbit serum, the preparations were incubated at room temperature with anti-IdU murine
Mixed low grade and high grade endometrial stromal sarcoma of uterus: differences on immunohistochemistry and chromosome in situ hybridisation.

A N Cheung, W F Ng, L P Chung and U S Khoo

doi: 10.1136/jcp.49.7.604

Updated information and services can be found at:
http://jcp.bmj.com/content/49/7/604

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/