Detection of perforin and tumour necrosis factor α mRNA expressing cells in sclerosing lymphocytic lobulitis of the breast

Robert E Hunger, Mirjana Hristic, Christoph Mueller, Andreas Kappeler, Hans Jörg Altermatt

Abstract
The contribution of a cellular immune response to tissue destruction in sclerosing lymphocytic lobulitis of the breast is not well understood. In this study, comparison of one case with two age matched control cases showed an increased frequency of activated perforin mRNA expressing cells at the site of tissue destruction in lobulitis. Along with the detection of tumour necrosis factor α (TNFα) mRNA expressing cells in the infiltrates, the striking association of perforin expressing activated cytotoxic cells with remaining gland parenchyma and the high level of perforin mRNA suggests activation of cytotoxic cells in situ. These findings are evidence that cell mediated cytotoxicity plays a significant role in the destruction of mammary gland tissue in sclerosing lymphocytic lobulitis.

Case report
A 27 year old woman with a 14 year history of diabetes mellitus type 1 presenting for a routine gynaecological examination was found with a firm lesion of 4 cm in diameter in the left breast. Although no obvious signs for malignancy were observed, the lump was surgically removed. Two women (27 and 28 years old), both normoglycaemic and without signs of diabetes mellitus, were chosen as controls. Breast surgery had been undertaken because of breast asymmetry and carcinophobia, respectively.

Methods
Tissue preparation
Five representative tissue samples of case 1, and two samples of each control were formaldehyde fixed and paraffin embedded according to standard techniques.

Immunohistochemistry
Sections of paraffin embedded tissue specimens were dewaxed with xylene and stained with the following antibodies as first stage reagents: rabbit antihuman CD3 (affinity purified; Dako, Denmark); L26 (anti-CD20, Dako); PG-M1 (anti-CD68, Dako); C8/144B (anti-CD8, Dako); OPD4 (anti-CD45RO, Dako); VC1.1 (anti-CD57, Dako). Before incubation with the primary antibody, tissue sections were either pretreated with trypsin (Difco 1:250, 0.1%, 20 minutes at 37°C, for CD3, PG-M1, and VC1.1), or boiled for five minutes in 10 mM citrate buffer (pH 6.0) in a pressure cooker (for C8/144B, or left untreated (for L26). Visualisation was done using an avidin-biotin complex (ABC) detection kit (Dako), with a biotinylated swine antirabbit or rabbit antimouse Ig secondary antibody, followed by incubation with ABC/horseradish peroxidase and the chromogen 3,3’-diaminobenzidine.
Cell mediated cytotoxicity in breast lobulitis

(Sigma). In negative controls the primary antibody was replaced with normal rabbit immunoglobulins or with irrelevant isotype matched mouse monoclonal antibodies.

PREPARATION OF 35S LABELLED RNA PROBES

A 600 bp fragment of the human TNFα cDNA (generously provided by Dr R Modlin, UCLA, California, USA) and a 1953 bp cDNA fragment of the human perforin gene (kindly provided by Dr J Tschopp, University of Lausanne, Switzerland), cloned into the expression vectors pGEM-1 and pBluescript SK, respectively were used to prepare 35S labelled sense and antisense RNA probes, as previously described.9

IN SITU HYBRIDISATION

In situ hybridisation was performed as previously described.7 Hybridised slides were exposed for 28 days at 4°C, developed and subsequently counterstained with nuclear fast red (0.05% in 5% aluminium sulphate) by standard techniques.

EVALUATION OF SLIDES

After in situ hybridisation with the 35S labelled antisense RNA probe, cells were considered positive for gene expression when they had at least three times as many silver grains as cells hybridised with the corresponding sense RNA probe, which served as a negative control. For each tissue sample 10–35 mm2 of tissue section were screened under a light microscope. Immunohistochemically stained tissue sections were analysed accordingly.

Results

HISTOLOGICAL AND IMMUNOHISTOCHEMICAL ANALYSIS

Histological examination of tissue specimens of the breast from our case showed a dense peribulolar and periductal fibrosis. Glandular parenchyma was widely absent and atrophic lobular and ductal structures were only rarely found. Preserved glandular elements were surrounded by a dense lymphoplasmocytic infiltrate and intraepithelial lymphocytes were frequently found (fig 1A). CD3+ cells (T cells) were found scattered over the whole tissue section. Maximum frequencies were seen in leucocyte aggregates with close contact to parenchyma (fig 1C). Considerable numbers of CD3+ cells were located within the epithelium. CD20+ cells (B cells) were less abundant than T cells. They were preferentially found in mononuclear cell aggregates near remaining parenchyma and were completely absent from the epithelial cell layer. CD68+ cells (monocytes/macrophages) were found scattered over the whole tissue section with slight preference for remaining parenchyma. Some of them were seen within the epithelial cell layer.

In the cellular infiltrates 48% of the leucocytes were positive for CD3 (T cells), 35% for CD20 (B cells), and 16% for CD68 (monocytes/macrophages). CD57 positive cells (natural killer (NK) cells) were only rarely found (< 1%). Granulocytes were almost absent, as assessed in the haematoxylin and eosin stained sections. There were slightly more CD8+ than CD4+ T cells (CD4 to CD8 ratio: 0.9). The frequency of CD3 positive cells was 32.4 cells per mm2 tissue section (SD 7.0), as assessed on five different tissue samples from our case.

IN SITU HYBRIDISATION

The two controls both showed histological signs of fibrocyestic breast disease (fig 1B). CD3 positive cells were found at about the same frequency as in the index case (32.5 cells per mm2 of tissue section; SD 5.4).

Discussion

Data on possible mechanisms operative in the pathogenesis of sclerosing fibrocystic breast disease of diabetic patients have up to now been very limited. Increased HLA-DR expression and association with other autoimmune diseases led to the presumption that these lesions could have an autoimmune pathogenesis.2 The relative contributions of humoral and cell mediated immune mechanisms are not clear. However, the absence of autoantibodies in many patients with sclerosing fibrocystic breast disease implies that humoral immune mechanisms are less important.5 We report here that cells expressing mRNA of the cytotoxic cell associated perforin gene are present at high frequency in tissue sections of a diabetic patient with sclerosing fibrocystic breast disease. So far expression of the perforin gene has been reported only in activated cytotoxic T cells, preferentially of the CD8 phenotype and NK cells. Since NK cells appear to be almost absent, perforin expressing cells are most probably T cells. Comparing the relative frequency of CD3 T cells (32.4 cells per mm2) and perforin mRNA expressing cells (3.9 cells per mm2) it can be concluded that more than 10% of the infiltrating T cells represent recently activated cytotoxic T cells. This is probably an underestimation of cytotoxic activity, as other perforin independent cytotoxic effector mechanisms, in particular Fas/FasL interaction, have been described.4 However, the contribution of this latter mechanism, which appears to be mainly operative in CD4+ cytotoxic T cells, cannot be assessed on the formaldehyde fixed material available for the present study. The high frequency of perforin expressing cells and the consistently high

Downloaded from http://jcp.bmj.com/ on June 20, 2017 - Published by group.bmj.com
Figure 1 Breast tissue sections of the patient with sclerosing lobulitis and diabetes mellitus (A, C, E, F) and a control patient (B, D). Dense lobular lymphocytic infiltrates are occasionally present in the patient with sclerosing lobulitis (A) whereas lobules of the control reveal only scattered lymphocytes (B). There was no obvious difference in the number of CD3+ lymphocytes in the patient with sclerosing lobulitis (C) and the controls (D) (ABC-peroxidase technique, DAB, counterstained with haematoxylin). In the patient with sclerosing lobulitis, in situ hybridisation with radioactive labelled riboprobes for the detection of TNFa (E) and perforin (F) showed TNFa reactive cells in or in close contact with the remaining epithelium. A similar distribution was found for perforin reactive cells. In situ hybridisations with sense probes of the TNFa (G) and perforin gene (H) as a negative control showed no specific accumulation of silver grains.
The number of perforin (white bars) and TNFα (black bars) expressing cells per mm² of tissue cross sections in the patient with sclerosing lobulitis (case 1) shows a severalfold increase when compared to the two controls (controls 1 and 2). Error bars = SD.

Cell mediated cytotoxicity in breast lobulitis

expression level in these cells, as well as the striking association of these perforin mRNA+ cells with remaining mammary gland structures, indicate an activation of these cytotoxic cells in situ rather than an immigration of previously activated cells at the site of the lesion.

Evidence for the presence of TNFα at the protein or mRNA level has been documented in virtually all inflammatory lesions analysed. Thus it is not surprising to find this gene being expressed in the cellular infiltrates of sclerosing lymphocytic breast disease. However, several points deserve particular attention. The frequency of TNFα expressing cells is sharply increased when compared to other fibrocystic disorders of the breast (fig 2). TNFα expressing cells were found among intraepithelial leucocytes which include both macrophages/monocytes and T cells. The precise mode of action of TNFα in the pathogenesis of diabetes associated sclerosing fibrocystic breast disease remains to be determined. One mode of action may be through cytotoxic effects, as has been shown for pancreatic cells in vitro. Alternately, TNFα has been found to upregulate several cell adhesion molecules on endothelial cell lines; thus this cytokine could exert its function through an increased recruitment of inflammatory cells to the lesions by upregulation of cell adhesion molecules on vascular endothelia. Attempts to detect ICAM-1 by immunohistochemistry gave inconclusive results; we cannot rule out the possibility that fixation of the tissue sample might have lead to structural alterations of the molecule which prevent detection by the monoclonal antibodies used (data not shown).

Taken together, these results support the notion of an autoimmune pathogenesis for sclerosing lymphocytic lobulitis in diabetes mellitus and indicate that cell mediated cytotoxicity represents a major mechanism involved in the massive tissue destruction observed in this disease.

10 Sikorski EE, Hallmann R, Berg EL, Butcher EC. The Pey er’s patch high endothelial receptor for lymphocytes, the mucosal vascular addressin, is induced on a murine endothelial cell line by tumor necrosis factor-α and IL-1. J Immunol 1993;151:5239-50.
Detection of perforin and tumour necrosis factor alpha mRNA expressing cells in sclerosing lymphocytic lobulitis of the breast.

R E Hunger, M Hristic, C Mueller, A Kappeler and H J Altermatt

J Clin Pathol 1997 50: 310-313
doi: 10.1136/jcp.50.4.310

Updated information and services can be found at:
http://jcp.bmj.com/content/50/4/310

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/