Differential expression of CD44v6 in metastases of intestinal and diffuse types of gastric carcinoma

E M Castellà, A Ariza, I Pellicer, A Fernández-Vasalo, I Ojanguren

Abstract

Aims—To assess whether standard and variant isoforms of CD44 (CD44s, CD44v5, and CD44v6) have a differential expression profile in early versus advanced gastric adenocarcinoma of the diffuse and intestinal types and their metastases.

Methods—Immunohistochemical expression of CD44s, CD44v5, and CD44v6 was evaluated in 14 early gastric cancers (nine intestinal and five diffuse) and 37 advanced adenocarcinomas (21 intestinal and 16 diffuse) as well as in 18 cases of perigastric lymph node metastasis. Ten normal and five metaplastic gastric mucosa samples were also included in the study.

Results—Although no significant association was found between the degree of invasion and the CD44 expression profile, CD44v6 positivity was detected more frequently in metastases of intestinal-type carcinomas (66%) than in metastases of diffuse-type neoplasms (11%) (p < 0.05). Weak CD44s, CD44v5, and CD44v6 expression was observed focally in both normal and metaplastic gastric mucosa samples.

Conclusions—These data suggest that CD44v6 expression may be involved in the production of lymph node metastases in intestinal-type gastric carcinoma but not in the diffuse-type disease, the metastatic potential of which is most likely unrelated to the CD44 family of adhesion molecules.

Keywords: gastric adenocarcinoma; intestinal carcinoma; diffuse carcinoma; CD44; immunohistochemistry; invasion; metastasis

The CD44 family of cell surface adhesion molecules is expressed in a variety of normal and neoplastic tissues. This protein family has been linked to a number of functions including lymphocyte homing and activation, haemoopoiesis, cell–cell, and cell–extracellular matrix interactions, and cell migration. To be able to exert such diverse effects, CD44 generates numerous isoforms through a mechanism of alternative splicing. Some of these CD44 isoforms also seem to play a role in the production of tumour metastases. Specifically, a non-metastatic cell line of a rat pancreatic adenocarcinoma has been shown to acquire metastatic potential when transfected with CD44 variants containing exon v6 (CD44v6), an effect that can be blocked by anti-v6 antibodies.

Figure 1 CD44s expression in normal antral gastric mucosa is detected in neck and isthmus mucous cells, as well as in lymphocytes.
All biopsy specimens were fixed in 10% neutral formalin, embedded in paraffin wax at 57–60°C, and stained with haematoxylin and eosin. For immunohistochemical studies, 5 µm thick sections were deparaffinised and incubated with anti-CD44s (dilution, 1/1000; clone 2C5; RD Systems, Abingdon, UK), anti-CD44v6 (dilution, 1/1000; clone 2F-1D; RD Systems), and anti-CD44v5 (dilution, 1/2500; clone VFF-8; Bender MedSystems, Vienna, Austria) mouse monoclonal antibodies for 22 hours at room temperature. Staining was visualised using the avidin–biotin–peroxidase complex (Dako, Glostrup, Denmark) technique. A non-immune mouse serum was used as a negative control instead of the specific monoclonal antibodies. A non-small cell lung carcinoma was used as a positive control for CD44s and CD44v6, and a colon adenocarcinoma was used as a positive control for CD44v5.

Two features were taken into account for the evaluation of CD44 expression: the percentage of positively stained tumour cells (negative, <5%; focal, between 5% and 50%; diffuse, >50%), and the intensity of staining: 0, no staining; 1, weak staining; 2, moderate staining; and 3, strong staining (comparable with lymphocytes). Only cell membrane staining was considered to be positive. Two of the authors evaluated the slides independently. Cases with dissimilar observations were reviewed to reach a consensus.

The data were compared with the aid of Fisher’s exact test to detect possible associations between CD44 expression and histological tumour type, level of tumour invasiveness, or lymph vessel involvement. p values under 0.05 were regarded as statistically significant.

Results

CD44 Immunoreactivity in Normal and Metaplastic Gastric Mucosa

Ten samples of normal antral or fundic mucosa and five samples of intestinal metaplasia of the stomach were tested for immunoreactivity with anti-CD44s, anti-CD44v5, and anti-CD44v6 monoclonal antibodies. CD44s was expressed in most samples examined, specifically in neck and isthmus mucous cells (fig 1), as well as in metaplastic areas.

Membrane positivity for v5 and v6 was present preferentially in the same proliferative and metaplastic areas, although the immunostaining was weaker and more focal in distribution. CD44s and isoforms containing exons v5 and v6 were not expressed in the foveolar epithelium or the luminal surface.

CD44 Immunoreactivity in Gastric Carcinomas

Intestinal-type adenocarcinomas

Early intestinal adenocarcinoma showed CD44s immunopositivity in 66% of cases. Advanced adenocarcinomas of the intestinal type were CD44s positive in 75% of non-metastasising cases and in 77% of metastasising tumours (fig 2).

CD44v5 was expressed in 33% of early and advanced non-metastasising carcinomas, whereas 55% of metastasising cases were...
immunoreactive for this antibody (fig 3) (p = 0.2) (fig 4).

Positive immunostaining with CD44v6 was obtained in 22% of early intestinal adenocarcinoma samples. As for advanced intestinal cases, non-metastasising and metastasising tumours expressed CD44v6 positivity with an identical frequency (33%) (fig 5).

Diffuse-type adenocarcinomas
Sixty per cent of early diffuse adenocarcinomas showed CD44s immunostaining. Non-metastasising and metastasising advanced cases were CD44 positive with a similar frequency (71% and 77%, respectively). The difference between early and advanced diffuse adenocarcinomas did not reach statistical significance (p = 0.5) (fig 2).

CD44v5 expression rates of early (20%) and advanced cases (14% for non-metastasising and 22% for metastasising instances) of diffuse adenocarcinomas were quite similar (fig 4).

As for CD44v6, non-metastasising advanced carcinomas showed immunoreactivity more commonly (42%) than early carcinomas (22%), although the difference did not reach statistical significance (p = 0.4). Only 22% of metastasising cases were positive for CD44v6 (fig 5).

LYMPH NODE METASTASES
Regarding lymph node metastases, CD44s was expressed in a higher percentage of intestinal carcinomas (88%) (fig 6) than diffuse-type cases (44%) (p = 0.06) (fig 2).

CD44v5 expression was also detected more frequently in metastases of intestinal carcinomas (55%) than in metastases of diffuse-type tumours (11%) (p = 0.06) (fig 4).

The CD44v6 expression rate in intestinal-type metastases (66%) (fig 7) was higher than in diffuse-type metastases (11%), the difference being statistically significant (p = 0.02) (fig 5).

The differentiation grade was not related to CD44s, CD44v5, or CD44v6 expression (data not shown). The intensity and distribution of immunostaining did not correlate with the level of invasion or the histological type of the carcinoma.

Lymph vessel involvement
We evaluated the possible correlation between CD44 positive metastases and lymph vessel involvement with the aid of Fisher’s exact test. We did not find an association of standard or variant isoform expression and lymph vessel invasion.

The percentage of cases with CD44 positive tumour cells within lymph vessels is as follows: intestinal metastasising carcinoma expresses immunoreactivity in 80% of cases for CD44s, in 17% for CD44v5, and in 33% for CD44v6. For diffuse-type gastric cancer these percentages are 75%, 12%, and 25%, respectively. These expression rates do not differ greatly from the results obtained for tumour cells not within lymph vessels.

Discussion
In this study, normal gastric mucosa showed focal immunostaining for CD44s. The epithelial cells expressing the highest levels of the standard isoform are the mucinous cells at the neck and isthmus of the antral or fundic glands. These areas correspond to the regenerative region of the gastric mucosa and seem to exhibit a pattern of CD44s expression which is quite similar to that shown by colonic basal cells.13

The two variant isoforms studied (CD44v5 and CD44v6) showed focal immunostaining in mucous cells of the antral and fundic mucosa and in metaplastic areas. In previous studies,
Heider et al found v5 expression in the foveolar proliferation zone and mucous surface epithelium, whereas intestinal metaplasia reacted with specific monoclonal antibodies for exons v5 and v6.

In the carcinoma samples investigated, CD44s immunopositivity seemed to increase with the depth of invasion, the percentage of positive cases being greater in advanced than in early carcinomas, although statistically significant differences could not be detected. Consequently, with respect to standard isofrom expression, our results are consistent with those of Mayer et al, who found that CD44s and CD44v9 expression is associated with the presence of distant metastases at the time of diagnosis and with increased local recurrence and mortality rates in patients with curatively resected tumours.

The expression of variant isoforms containing spliced exon v6 has been associated previously with an unfavourable outcome in non-Hodgkin’s lymphoma. Regarding epithelial tumours, Kaufmann et al demonstrated that CD44v6 is a good prognostic marker in breast carcinoma. On the other hand, expression of CD44 variant isoforms containing v6 exon has been seen to increase in parallel with colorectal tumour progression and Dukes’ stage. However, other authors have claimed that CD44v6 expression has a prognostic value which is independent of Dukes’ stage.

Previous studies of gastric cancer have reported that intestinal-type adenocarcinoma expresses variant isoforms containing exons v5 and v6, whereas diffuse-type adenocarcinoma expresses predominantly exon v5 and, in a very low percentage of cases, exon v6. In addition, the lymph node metastases of these diffuse-type tumours have been shown to be devoid of v6 related proteins by Southern blot analysis. In contrast, a correlation between primary tumours of intestinal type and their lymph node metastases has been observed in regard to v6 containing isoforms, while no obvious correlation was detected for exon v5. More recently, Dammrich et al claimed that the relation between v6 and metastatic lymphogenic spreading is different in the two cancer types. Specifically, whereas diffuse-type metastasising cells lack v6 expression, intestinal-type cancers do show v6 staining in infiltrative lymph node metastases.

Our results are in agreement with these previous observations. In our hands, isoforms containing exon v6 were detected more frequently in metastasising intestinal-type carcinomas than in metastasising diffuse-type carcinomas. Moreover, CD44v6 expression was significantly more frequent in lymph node metastases of intestinal-type carcinomas than in those of diffuse-type cases. These findings suggest an important role for exon v6 in the metastatic process, particularly in the lymph node spreading of intestinal adenocarcinoma cells. On the contrary, invasion of lymph nodes by diffuse-type tumour cells seems to be independent of exon v6.

As for the level of invasion, we have not found statistically significant differences in standard and variant CD44 isoform expression between early and advanced cases of both histological types of gastric adenocarcinoma. These results may indicate that CD44 participation in the metastatic cascade takes place at the initial stages of tumour progression, because expression of CD44 variant isoforms is already detected in early carcinomas of both the intestinal and diffuse types. Further studies are necessary to elucidate the mechanisms that drive neoplastic cell invasion and migration to lymph nodes, as well as the degree of participation of CD44 in this process.

This work was supported by Spain’s Fondo de Investigación Sanitaria (Grant No. 95/1345)

Differential expression of CD44v6 in metastases of intestinal and diffuse types of gastric carcinoma.

E M Castellà, A Ariza, I Pellicer, A Fernández-Vasalo and I Ojanguren

doi: 10.1136/jcp.51.2.134

Updated information and services can be found at:
http://jcp.bmj.com/content/51/2/134

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/