Ticlopidine induced colitis: a histopathological study including apoptosis

D Berrebi, A Sautet, J-F Flejou, M-C Dauge, M Peuchmaur, F Potet

Abstract

Aims—To describe ticlopidine related microscopic colitis and to assess the occurrence of apoptosis in the colon epithelium.

Methods—A series of colorectal biopsy samples from nine patients with ticlopidine related chronic diarrhoea were analysed. Biopsies were also taken from five of these patients between two and four months after ticlopidine withdrawal. The number of apoptotic cells in the crypts/mm² (apoptotic index) was calculated using in situ labelling by terminal deoxynucleotidyl transferase (TdT) mediated dUTP-biotin nick end labelling (TUNEL). All specimens were matched to normal colorectal specimens from a control group of comparable age and sex distribution.

Results—Histological examination of the colon biopsy specimens taken from all nine patients with ticlopidine related chronic diarrhoea showed characteristic features of microscopic colitis. The histology returned to normal when ticlopidine was withdrawn. Apoptotic cells were rarely found in controls, and the mean apoptotic index was 0.53. The apoptotic index was significantly higher (16.53) in ticlopidine related colitis, but decreased dramatically to control value when ticlopidine was withdrawn.

Conclusion—Microscopic colitis can be induced by ticlopidine and is accompanied by an increase in epithelial apoptosis. Hence, increased apoptosis might be related to drug injury or might be part of microscopic colitis.

(J Clin Pathol 1998;51:280–283)

Keywords: apoptosis; microscopic colitis; ticlopidine

Microscopic colitis is a clinical-pathological syndrome characterised by chronic diarrhoea, normal endoscopy, but mild inflammatory changes in the colonic mucosa. These changes have been linked to the use of certain drugs—for example, microscopic colitis has been reported in colorectal biopsies of patients treated with ticlopidine. Ticlopidine is an inhibitor of platelet aggregation with a particular antithrombotic action; one of its side effects is chronic diarrhoea.

Apoptosis, or programmed cell death, is an active, selective, and irreversible process of physiological cell deletion. Chromatin cleavage is the most characteristic biochemical feature of apoptosis. A wide variety of extrinsic signals has been implicated in the process, including cytotoxic drugs. The possibility that apoptosis in the colonic crypts might indicate exposure to drugs, particularly non-steroidal anti-inflammatory drugs, was suggested first by Lee, from examination of colorectal biopsy specimens stained with haematoxylin and eosin. There is also experimental evidence that melanosis coli caused by anthraquinone is accompanied by apoptosis of colonic epithelial cells.

This report describes nine cases of microscopic colitis in patients treated with ticlopidine, and examines apoptosis in their colonic mucosa. An in situ terminal deoxynucleotidyl transferase (TdT) mediated dUTP-biotin nick end labelling (TUNEL) method was used to identify cells undergoing apoptosis in routinely processed, paraffin wax embedded material.

Methods

PATIENTS

The records of nine patients with ticlopidine related microscopic colitis were retrieved from the files of two departments of pathology (Hôpital Bichat and Hôpital Beaujon, Paris). The two women and seven men aged 60–78 years were treated with ticlopidine, 500 mg/day, for transient attacks of ischaemia or after myocardial infarction. Ticlopidine was the only drug taken before diarrhoea occurred. All patients presented with non-bloody watery diarrhoea and had two to five bowel movements each day. The diarrhoea began after they had been on ticlopidine for three to eight weeks. None of the patients had a history of autoimmune disease (table 1). Total colonoscopy was performed four to 12 weeks after the onset of diarrhoea. Endoscopic examination showed the colonic mucosa to be normal in all cases. Two biopsies were taken from the sigmoid colon and rectum.

Ticlopidine was withdrawn, and the diarrhoea disappeared in all nine patients over the next five to seven days. A colonoscopic examination with biopsy was performed in five patients two to four months after drug withdrawal.

The controls were a series of 10 histologically normal colon biopsy specimens from

Table 1 Patients treated with ticlopidine—clinical characteristics

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age (years)</th>
<th>Sex</th>
<th>Duration of diarrhoea (weeks)</th>
<th>Bowel movements each day</th>
<th>Abdominal pain</th>
<th>Weight loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>69</td>
<td>M</td>
<td>8</td>
<td>3–5</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>73</td>
<td>M</td>
<td>4</td>
<td>3–4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>65</td>
<td>M</td>
<td>4</td>
<td>3–4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>62</td>
<td>M</td>
<td>8</td>
<td>2–3</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>69</td>
<td>M</td>
<td>12</td>
<td>3–4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>77</td>
<td>M</td>
<td>4</td>
<td>4–5</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>78</td>
<td>M</td>
<td>4</td>
<td>3–4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>76</td>
<td>M</td>
<td>4</td>
<td>2–3</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>9</td>
<td>60</td>
<td>F</td>
<td>5</td>
<td>3–4</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
there are many apoptotic bodies in the germinal centres (original magnification ×400).

The crypt epithelium was then analysed quantitatively using a computer assisted technique. Images of the TUNEL specimens under a Leitz photomicroscope were sent via an IEC 800 CC colour video camera to a 486 PC computer with a digitalisation card (Cyclope; Digital Vision, Systèmes Sud, Toulouse, France). The signal was displayed on a video monitor (Sony Trinitron PVM 1440, 738 × 512 pixels; Tokyo, Japan). The slides were studied at ×400 magnification (a pixel = 0.276 µm). The area of the crypts was measured using morphometric software (ERESILAB; Rana Inc, Palaiseau, France). The number of apoptotic cells in the crypts/mm² or the apoptotic index was calculated. Because the surface epithelium was damaged in the specimens from patients with ticlopidine related colitis, apoptotic cells were not counted in the surface epithelium.

STATISTICAL METHODS
The results were analysed using the Kruskal-Wallis and Mann-Whitney tests.

Results
Histological examination of the colon biopsy specimens from all nine patients with ticlopidine related chronic diarrhoea showed characteristic features of microscopic colitis, with increased numbers of intraepithelial lymphocytes, eosinophils and neutrophils, granulocytes in the surface epithelium, and injury to the surface epithelium such as flattening of surface cells, epithelial detachment, and loss of epithelial cells. There was some infiltration of crypts by lymphocytes and eosinophils, but no crypt damage. The number of inflammatory cells in the lamina propria was increased. The lamina propria was frequently infiltrated with eosinophils. The inflammatory infiltrate was more pronounced in the upper part of the mucosa than in the deeper part. The thickness of the collagen subepithelial layer was within the normal range of 5–7 µm in all the sections.1

Detection of genomic fragmentation by TUNEL resulted in intense nuclear staining of apoptotic cells and apoptotic bodies in the germinal centres of lymph nodes (fig 1). TUNEL revealed a distinct pattern of nuclear staining in the specimens of ticlopidine related microscopic colitis, with staining typically confined to a cluster of neighbouring crypts, while other areas of the mucosa were negative. TUNEL labelled cells were morphologically intact cells undergoing apoptosis, cells showing chromatin condensation at the nuclear periphery, or cells with fragmented nuclei (fig 2A). The apoptotic index was calculated for all the colonic biopsy specimens (table 2). The specimens of ticlopidine related colitis had a mean apoptotic index of 16.53 (range, 7.41–33.68). There were few if any apoptotic cells in the crypts of the control group, and the mean apoptotic index was 0.53 (range, 0–2.67). The five specimens taken after ticlopidine withdrawal all had a histologically normal mucosa and the mean apoptotic index had decreased dramatically to control values (fig 2B).
Apoptotic index, apoptotic cells/mm2.

<table>
<thead>
<tr>
<th>No of patients</th>
<th>Apoptotic index (mean (SD))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>10 0.53 (0.92)</td>
</tr>
<tr>
<td>Ticlopidine induced colitis</td>
<td>9 16.53 (9.6)</td>
</tr>
<tr>
<td>Ticlopidine withdrawn</td>
<td>5 1.96 (1.83)</td>
</tr>
</tbody>
</table>

The apoptotic index of patients with ticlopidine related colitis was significantly greater than that found in the control group, or the ticlopidine withdrawal group (p = 0.000145). In contrast, there was no statistical difference between the apoptotic indices of the control and ticlopidine withdrawal groups (p = 0.55).

Discussion

Microscopic colitis is a pathological syndrome of chronic watery diarrhoea, with diffuse inflammation of the colonic mucosa, but normal colonic endoscopy.1 The aetiology of microscopic colitis is unknown, but recent reports suggest that it may be induced by drugs such as the non-steroidal anti-inflammatory drugs Cyclo 3 fort2 – 14 or ranitidine.15

Ticlopidine is a potent inhibitor of platelet aggregation induced by ADP.2 4 17 18 One of its frequent side effects is a transient moderate diarrhoea, but a few cases of chronic, severe diarrhoea have been reported.2 4 17 18 Only isolated cases of ticlopidine related diarrhoea have been documented histologically, and they have shown a typical microscopic colitis pattern.19 20

Histological examination of the colon biopsy specimens from our nine cases of ticlopidine related diarrhoea showed characteristic features of microscopic colitis with increased numbers of lymphocytes, eosinophils, and neutrophils, granulocytes in the surface epithelium and in the lamina propria, and damage to the surface epithelium. The lamina propria was frequently infiltrated by eosinophils.

Recently, Lee suggested that the increased number of apoptotic cells in colon crypts could be a result of a drug effect.4 5 This phenomenon has mostly been described with cytotoxic drugs,22 but cases have been reported for other classes of drugs, such as cyclosporin A and gold salt.22 23 Crypt apoptosis is not caused specifically by drugs, as it also occurs in infectious diseases24 and in ulcerative colitis.25 Nevertheless, it is instructive to examine apoptosis in drug related microscopic colitis using the sensitive TUNEL method.

DNA fragmentation is considered to be the most characteristic feature of programmed cell death,1 and it can be found not only in histologically defined apoptotic cells, but also in morphologically intact cells undergoing apoptosis.26 The TUNEL method is based on the direct in situ labelling of DNA breaks and is more sensitive than the standard staining methods when combined with cell morphology. Slides stained with haematoxylin and eosin show only apoptotic bodies that have reached the end of apoptosis, just before they are phagocytosed by macrophages or neighbouring epithelial cells. Cells appear apoptotic only for a few minutes, so that it may be difficult to distinguish between intraepithelial neutrophils and apoptotic bodies, which may distort the results.

The TUNEL method showed increased apoptosis in ticlopidine related microscopic colitis. The apoptotic index was significantly greater in all the nine patients with ticlopidine related microscopic colitis than in the control group. Furthermore, the five cases who were biopsied after ticlopidine was withdrawn showed a dramatic decrease in apoptotic index while the biopsies were histologically normal.

The relation between apoptosis, ticlopidine, and microscopic colitis is unclear. Apoptosis may be the result of direct toxicity caused by ticlopidine, as in the agranulocytosis due to this drug.27 Ticlopidine could also cause apoptosis indirectly via a cell mediated process. All the patients treated with ticlopidine have above normal numbers of eosinophils and lymphocytes in the lamina propria. Ticlopidine has been also associated with villus atrophy and lymphocytic gastritis.19 These mucosal inflammatory cells were unlikely to be attracted by apoptotic epithelial cells, because apoptotic cells are phagocytosed as soon as the DNA damage begins. On the contrary, inflammatory cells, and particularly T lymphocytes, could trigger the cascade of events that results in cell apoptosis. This cell mediated apoptosis could involve the perforines, granzyme B/TiA1 or CD95 (Fas) systems.28 29 Fas is expressed by several human cells including fibroblasts, T
lymphocytes, myeloid cells, and the normal colon epithelium, and could be dramatically deregulated in certain pathological conditions. It is always possible that apoptosis is part of the general histological picture of microscopic colitis. A study of apoptosis in a large series of idiopathic microscopic colitis would help to clarify this point.

Thus, microscopic colitis may be induced by ticlopidine and is accompanied by an increase in epithelial cell apoptosis, as reported for ranitidine related colitis. Further studies are needed to see if the same phenomenon occurs in other drug induced colitis and in drug related diarrhoea with an apparently normal colon mucosa.

Ticlopidine induced colitis: a histopathological study including apoptosis.

D Berrebi, A Sautet, J F Flejou, M C Dauge, M Peuchmaur and F Potet

doi: 10.1136/jcp.51.4.280

Updated information and services can be found at:
http://jcp.bmj.com/content/51/4/280

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/