Antibody panel in diagnosis of lymphoid neoplasms

The recent article by Gala and colleagues\(^1\) raises once again the problem of the applicability of an antibody panel in the diagnosis of lymphoid neoplasms in routinely processed bone marrow trephine biopsies. In Bouin fixed bone marrow biopsies, these investigators found that two important antibodies used routinely (CD20/L26 and DBA-44) gave unsatisfactory results. Other B cell markers (LN-2, MB-2, and Ki-B-3) showed strong reactivity and still others (4KB5 and Ki-B-3) had inconsistent reactivity.

In most surgical pathology laboratories there is not such an ample panel of B cell markers. In these cases, L26 is the marker of choice since its value in the differential diagnosis of reactive and neoplastic small cell lymphoid aggregates in bone marrow biopsies has been demonstrated.\(^2\) Unreliable results obtained using L26 in bone marrow biopsies poses an important diagnostic problem. For this reason, we would like to stress the advantage of fixing bone marrow in Zenker/glacial acetic acid solution (20:1). Addition of 1 ml glacial acetic acid to 20 ml of Zenker’s solution must be undertaken immediately before use. Fixation time lasts 16 to 24 hours, and there is no need for additional decalcification after fixation. The specimen must be washed in running water for three to six hours and routinely processed for embedding in paraffin.\(^3\) If undesired mercury pigment persists, sections can be treated with a 5% iodine solution in alcohol 70%, for three minutes, before staining. The level of morphological detail preserved is excellent. Although L26 has been reported not to work on Zenker-fixed bone marrow biopsies,\(^4\) our experience with this method has been very satisfactory, using either a panel of antibodies indicated for haematological neoplasms\(^5\) or for metastasis of solid tumour. In particular, we have had consistently satisfactory results using L26 (Dakopats) and DBA-44 (G. Delsol, Tou- louse, France), as shown in fig 1. The retrieval procedure consists of boiling slides in 0.01M citrate buffer, pH 6.0, in a household microwave (900 W, two cycles, 7 minutes each). Under our conditions, all the antibodies indicated work well; only CD61/gpIIIa (Dakopats) is consistently unreactive.

JOSE VASSALLO
Department of Pathological Anatomy, State University of Campinas (UNICAMP), São Paulo, Brazil

GLAUCÉ APARECIDA PINTO
Laboratory of Immunohistochemistry, CAISM-UNICAMP, São Paulo, Brazil

The authors comment:

We presented a list of antibodies suitable for immunostaining of Bouin’s fixed paraffin embedded bone marrow trephine biopsies. With regard to Vassallo and Pinto’s illustration of hairy cells positively stained by L26 in Zenker’s fixed bone marrow, previous immunomorphological analysis of these cells showed that positive staining is more common with DBA-44 than with L26 on formalin, Zenker, or Bouin’s fixed bone marrow.\(^7\) Other investigators willing to identify residual hairy or lymphoid neoplastic cells have reported the lack of staining with L26 in Zenker’s fixed,\(^8\) as well as formalin or Bouin’s fixed, bone marrow.\(^9\) In one of the above studies, it is worth noting that the overnight Zenker/acetic acid (19:1, v/v) protocol was very similar to that described by Vassallo and Pinot, and that the lack of staining was not confined to L26 but also extended to CD45RA (4KB5).\(^10\) This is another discrepancy with Vassallo and Pinot’s data, since they reported that “all the antibodies indicated [by Perkins and Kjeldberg]” work well,—including CD45RA. On the contrary, results with Bouin’s fixed bone marrow were in perfect accord with our own data.\(^11\) Interestingly, very high background was reported with the widely used antibody UCHL-1 in the study cited by Vassallo and Pinot, as well as in other studies.\(^12\)

Besides the fixative, decalcification is another significant factor contributing to the alteration of L26 immunoreactivity.\(^13\) Depending on the strength of the acids, bone decalcification may indeed influence antigenic reactivity.\(^14\) Decalcification is mandatory before sectioning paraffin embedded bone marrow, is part of the traditional methods of preparation. Vassallo and Pinot stated that no additional decalcification was performed after fixation/decalcification.

Figure 1 Hair cell leukaemia. Strong positivity for CD20/L26 (bone marrow biopsies; streptavidin–biotin–peroxidase; ×1045; haematoxylin counterstain).
Among the other two reports using Zenker’s fixative, only one used additional decalcification in RDO, a compound known to alter reactivity with antibody CD61/GIIa and clastase. However, both reports pinpointed the lack of L26 staining regardless of these methodological differences. In our opinion, satisfactory results obtained by Vasello and Pinot with L26 may therefore not be related to the fixation/decalcification procedure but rather to the retrieval procedure, which was not used in the other two studies.

We would like to make a further modification to Vassallo and Pinot’s comment. In our opinion, no cell marker shows such restricted reactivity that it allows a clear distinction to be drawn between malignant and reactive neoplastic lymphoid aggregates, except for the light chain restriction markers and Bcl-2. It is, however, true that the pattern of staining (homogeneous or mixed), together with the size and number of aggregates, may help to discriminate between reactive or malignant aggregates. Accordingly, any B cell marker—including MB-2 or Ki-B5—may be as satisfactory as L26.

Finally, we would like to update the list of antibodies effective on Bouin’s fixed bone marrow, taking advantage of recent additional investigations. Bone marrow samples were collected from patients presenting with systemic malignant mastocytosis (n = 4), and stained using an antibody antitryptase (AA1; Dakopatts, Provan, Belgium). Bone marrow fixation/decalcification, alkaline phosphatase-antialkaline phosphatase staining, and evaluation of staining intensity were described in our previous report. Intestinal, splenic, and cutaneous infiltration were present in the four patients, all of whom complained of diarrhea and one presented with peripheral blood cytopenia. Immunostaining of the bone marrow clearly showed a diffuse infiltration with positively stained (+ or +) mast cells in three cases, and scattered positive (+ or +) mast cells in one (fig 1). Microwave heating or enzymatic digestion were not necessary. These complementary data are in agreement with previous data, and confirm that AA1 antibody is suitable for detecting marrow mastocytosis in Bouin’s fixed bone marrow.

The study with anti-tryptase antibody was supported by the association Salus Sanguinis.

JEAN-LUC GALA
Laboratory of Molecular Biology, Department of Biochemistry, Cliniques Universitaires St Luc/UCL, B-1200 Brussels, and Hopital Militaire Reine Astrid, Rue Brwyn, B-11 20 Brussels, Belgium

YVES HORMANS
Department of Internal Medicine, Cliniques Universitaires St Luc/UCL, Brussels, Belgium

References

Book reviews

At last the relative neglect of pathology of the prostate is at an end! A new multi-author book, which is comprehensive and extensively illustrated, is to be warmly welcomed. The
Editors have given the 44 contributors a wide remit and state in the preface that repetitions and inconsistencies are to be expected, highlighting important and controversial issues in prostatic pathology. This presumes that this is a book that will be read from cover to cover and not, as I suspect most pathologists will use it, as a bench reference book.

The outcome of this policy means that tighter editorial reins would, in many cases, have been in order. While many of the early chapters are clear and concise, later in the book a certain surrealism creeps in. The chapter titles lengthen and become more convoluted. “Diagnosis of prostate cancer altered by ionising radiation with and without neoadjuvant androgen hormonal ablation” must be a record. By the end of the book, the chapters are randomly arranged with a chapter of (beautiful) MRI images sandwiched uncomfortably between ones on DNA flow cytometry and neuroendocrine differentiation. Bizarrely, one chapter is written as a James Joycean question and answer session. While the black and white illustrations are generally good, the four colour plates are less than half filled with small dark images leaving acres of glossy white space unfilled.

As a reference book, however, it is probably unrivalled. Stricter editorial control would have resulted in a less bumpy ride for the reader, so fasten your seat belts—and buy it!

DAN BERNEY

Mollison’s Blood Transfusion in Clinical Medicine has now reached its 10th edition. Engelfriet and Contreras joined Mollison in 1987 to help with the eighth and subsequent editions. But the book and its scholarly style remains in essence the book of reference and the intellectual companion it was when I bought the fifth edition as a trainee in haematology in 1972. Unfortunately, given the present cost of £79.50, many trainees will be unable to afford the book, more’s the pity.

Mollison is not a practical guide to transfusion practice and is not suitable for spoon feeding the modern trainee to pass exams. It is not a book to tell you how to do something; rather, the evidence connected with the clinical practice of blood transfusion is presented in a reasoned, balanced, and critical way such that you are left to work out what is important and practical yourself.

Mollison is a book to consult about the why of blood transfusion, explaining the pathophysiology of everyday blood banking practice and enabling the consultant haematologist to answer those annoyingly infrequent but pressing queries about blood transfusion practice that would otherwise catch him on the hop.

Mollison covers the clinical breadth of transfusion practice in great detail, starting with the withdrawal of blood and anticoagulants, the process of blood donation, blood sparing ploys, exchange transfusion, and cytapheresis. There are separate chapters on the transfusion of red cells and red cell incompatibility in vivo, along with haemolytic transfusions and haemolytic disease of the fetus and newborn. The immunology of red cells is very comprehensively covered and cell grouping techniques are discussed. There is a separately authored chapter on transfusion in oligoemia with discussion of the pathophysiology of shock, and the crystalloid vs colloid debate is covered along with the use of plasma expanders and red cell substitutes. The immunology of leucocytes, platelets, and plasma constituents is not forgotten, and two chapters are devoted to the unfavourable effects of blood transfusion, including reactions to leucocyte and platelet antibodies, graft versus host disease, reaction to transfused proteins, mechanical and chemical induced toxicities, thrombophlebitis, iron overload, and a detailed and up to date discussion of the infectious hazards of transfusion.

Given such coverage, it is understandable but not acceptable that the publishers pressed the authors to keep discussion and referencing to a minimum. There are numerous examples of recent blood transfusion practice which are not critically appraised and referenced to the standards one would wish (for example, where is the evidence and reference that in promyelocytic leukaemia, leucopheresis will help to avoid DIC before chemotherapy is effective?). Mollison is too important an institution for the editors to succumb to pressures to prune and save space, and this textbook must be allowed to develop as the evidence based source of blood transfusion practical and clinical medicine. Future editions must resist pressures to “dumb down” or to skimp discussion of subjects which would benefit from in depth critical appraisal (for example, therapeutic plasmapheresis, dealing with Jehovah’s witnesses, obstetric haemorrhage—which is still killing mothers). Graft versus host disease needs more attention to pathophysiology, with its indexing sorted out. The paragraphs on transfusion haemolysin need more careful proof reading, and perhaps reference to haemochromatosis and HLA would be helpful.

I look forward to the next edition of Mollison being even better for being bigger, and the publishers and editors should be encouraged to prepare a CD ROM version to make it more wieldy and accessible.

P J HAMILTON

CORRECTION

Because of a publishing error, the title and acknowledgement relating to the front cover for the June issue was repeated in July. The correct details of the July cover are reproduced below. We apologise for this mistake.

JULY COVER ILLUSTRATION: In-house cytopsin neutrophil preparation showing staining for cANCA (1/640) (positive for both PR3-ANCA and MPO-ANCA). Courtesy of Roger Silvestrini, Immunopathology Department, Westmead hospital, NSW, Australia.
Antibody panel in diagnosis of lymphoid neoplasms.

J Vassallo and G A Pinto

doi: 10.1136/jcp.51.8.638

Updated information and services can be found at:
http://jcp.bmj.com/content/51/8/638.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/