Misdiagnosis of toxoplasma infection by PCR: fears unfounded

M Bhalla, J D Johnson, R E Holliman, D Savva

Abstract
A nested PCR based diagnostic assay for the detection of toxoplasmosis was devised in 1990 and was used successfully among a battery of tests for the clinical diagnosis of *Toxoplasma gondii* infection since 1991. However, it was reported that the assay produced false positive diagnoses with *Nocardioides asteroides* infection. Investigation of this phenomenon showed that although cross reactivity with some unrelated organisms may be observed when altered conditions are employed, the assay does not lead to misdiagnosis if performed under the appropriate, stringent conditions.

Abstract

Difficulties in the diagnosis of human toxoplasmosis by conventional and serological methods, especially in AIDS and organ transplant patients, led to the development of nucleic acid based diagnostic assays. Several diagnostic tests based on the polymerase chain reaction (PCR) have been devised in the last few years, with the most widely used amplifying parts of either the B1 gene or the major surface antigen gene SAG1, previously known as p30 gene, of *Toxoplasma gondii*. The assay devised in this laboratory is a nested PCR for the SAG1 gene in which the first amplification generates a 914 base pair (bp) fragment that is used as the target for the amplification of a 522 bp fragment in the second PCR; the PCR products may be visualised either directly on agarose gels or after Southern blotting and hybridisation. This assay has been successfully employed in conjunction with other tests to diagnose toxoplasmosis since 1991, but a recent report indicated that it gives false positive results with the phylogenetically unrelated intracellular bacterium *Nocardia asteroides*. In preliminary studies, we investigated this cross reactivity and confirmed that it occurred with some species of *Nocardia*, *Mycobacterium*, and *Actinomyces* and argued that, although these organisms yield PCR products, this did not pose any problems with the diagnostic utility of the assay since sound clinical practice warrants that PCR should not be the only basis of diagnosis for toxoplasmosis. In this technical note we report the findings of our detailed investigations of this cross reactivity.

Methods

POLYMERASE CHAIN REACTION

Genomic DNA was isolated from the species listed in table 1 using a proteinase K and CTAB extraction method. The nested PCR for the *T. gondii* SAG1 gene was performed using the conditions and the oligonucleotide primers described earlier. The PCR products were visualised on 2% (wt/vol) agarose gel showing second PCR products from *Toxoplasma gondii* (lane 2), *Nocardia asteroides* (lane 3), *Mycobacterium tuberculosis* (lane 4), and *Actinomyces denticola* (lane 5). Lane 6 is a control without DNA and lanes 1 and 7 are molecular weight markers (Gene Ruler® 100 bp DNA ladder; MBI Fermentas) containing the following fragments (in base pairs): 100, 900, 800, 700, 600, 500, 400, 300, and 200.

SOUTHERN HYBRIDISATION

Southern hybridisation was carried out using standard methods. Briefly, any second PCR products were visualised either directly on agarose gels or after Southern blotting and hybridisation. This assay has been successfully employed in conjunction with other tests to diagnose toxoplasmosis since 1991, but a recent report indicated that it gives false positive results with the phylogenetically unrelated intracellular bacterium *Nocardia asteroides*. In preliminary studies, we investigated this cross reactivity and confirmed that it occurred with some species of *Nocardia*, *Mycobacterium*, and *Actinomyces* and argued that, although these organisms yield PCR products, this did not pose any problems with the diagnostic utility of the assay since sound clinical practice warrants that PCR should not be the only basis of diagnosis for toxoplasmosis. In this technical note we report the findings of our detailed investigations of this cross reactivity.

Table 1 Cross reacting species and sizes of the PCR products

<table>
<thead>
<tr>
<th>Species</th>
<th>Approx size of PCR products (bp)</th>
<th>Hybridisation at:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxoplasma gondii</td>
<td>522</td>
<td>60°C + +</td>
</tr>
<tr>
<td>Nocardia asteroides</td>
<td>450</td>
<td>+ −</td>
</tr>
<tr>
<td>Mycobacterium tuberculosis (7 clinical isolates)</td>
<td>450</td>
<td>+ −</td>
</tr>
<tr>
<td>Actinomyces naeslundii</td>
<td>Smear</td>
<td>− −</td>
</tr>
<tr>
<td>A bovis</td>
<td>100</td>
<td>+ +</td>
</tr>
<tr>
<td>A denticola</td>
<td>285</td>
<td>+ −</td>
</tr>
<tr>
<td>A odontolyticus</td>
<td>Smear</td>
<td>− −</td>
</tr>
<tr>
<td>Plasmodium falciparum</td>
<td>No product</td>
<td>NA NA</td>
</tr>
</tbody>
</table>

bp, base pairs; NA, not applicable.

Figure 1 A representative 2% wt/vol agarose gel showing second PCR products from *Toxoplasma gondii* (lane 2), *Nocardia asteroides* (lane 3), *Mycobacterium tuberculosis* (lane 4), and *Actinomyces denticola* (lane 5). Lane 6 is a control without DNA and lanes 1 and 7 are molecular weight markers (Gene Ruler® 100 bp DNA ladder; MBI Fermentas) containing the following fragments (in base pairs): 100, 900, 800, 700, 600, 500, 400, 300, and 200.
products generated by the putative cross-reacting species were separated by electrophoresis on an agarose gel and transferred onto Hybond-NTM nylon membrane (Amersham Pharmacia-Biotech). Probe preparation, hybridisation, and detection of hybrids was performed as described by the manufacturer of the DIG DNA labelling and detection kit (Boehringer Mannheim). Briefly, the membranes were incubated for six hours at 60°C (or at 65°C) in the hybridisation solution (5×SSC, 0.1% wt/vol N-laurylsarcosine, 0.02% wt/vol sodium dodecyl sulphate (SDS), 1% blocking reagent provided in the kit; SSC is 0.15 M NaCl and 0.015 M Na3 citrate), followed by six hours in fresh hybridisation solution containing the probe, which was the 522 bp second PCR product of *T. gondii* labelled using digoxigenin (DIG). Membranes were then washed at the hybridisation temperature twice (five minutes each) in 2×SSC containing 0.1% SDS and twice for five minutes each and once for 15 minutes in 0.1×SSC containing 0.1% SDS.

CLONING AND SEQUENCING OF PCR PRODUCTS

The PCR products were purified from agarose gels using the QIAquick gel extraction kit (Qia-gen) and cloned into the pGEMR-T easy vector as recommended by the supplier (Promega Corporation). Recombinant plasmids were purified using the QIAprep spin miniprep kit (Qiagen) and sequenced at the core sequencing facility in the School of Animal and Microbial Sciences (The University of Reading) using Thermosequenase™ and an ALF express™ DNA sequencer as recommended by the supplier (Amersham-Pharmacia Biotech).

Results and discussion

In the nested PCR assay developed in this laboratory,2 use of *T. gondii* DNA as the target generated the expected products (that is, a 914 bp and a 522 bp product following the first and second PCR, respectively) but in the other species examined this was not the case (table 1; fig 1).

With most of the other organisms, the first PCR either did not yield a detectable product or the product was seen as a faint smear. The second PCR with these species generated products which ranged from 100 to 750 bp in length and in some cases only a smear was observed. Our results for *Nocardia asteroides* (table 1 and fig 1) are different from those reported by McHugh et al,5 who showed that the size of the PCR product was the same as that of *T. gondii*.

One explanation for the difference in the size of the PCR products in these two studies is that it may reflect differences in the strains used. In the present study we used a type culture of *N. asteroides* (NCTC 11293), while McHugh *et al* used a clinical isolate identified as *N. asteroides*. It is also possible that McHugh *et al* used an *N. asteroides* DNA preparation that may have been contaminated with either *T. gondii* DNA or a *T. gondii* PCR product. In a recent comparison of PCR assays (including ours) for detection of *T. gondii* and the related coccidian parasite *Neospora caninum*, Ellis8 noted that...

Figure 2 Sequences of the second PCR product from *T. gondii* (A), *Mycobacterium tuberculosis* (B), *Nocardia farcinica* (C), and *Actinomyces denticola* (D). The two PCR primer sequences (20 bases each) are not shown. The GenBank accession numbers for the sequences are: *Mycobacterium tuberculosis*, AF 133644; *Nocardia farcinica*, AF133645; and *Actinomyces denticola*, AF 133646. The Toxoplasma gondii sequence is a part of the SAG1 sequence (GenBank accession number, X14060, M23658).

A

1. ACACCGACGG AGAACACTT CACTCTCAAG TGCCCTAAAA CAGCGCTCAC
2. AGAGCTCCCC ACTTCTGCGT ACCTCACCAG CAGGCAAATG TGCAGCGGG
3. GTACTACAGA TAGCTGACAA TCAAGACTGTC TACATTTGAG GTCTCATTGAT
4. CGTGAAGACG AAGATACGTC GTGAGGGGCG GATGCTGCTA GCTCTGACAC
5. GGCGAGCGTG AACTCAGCC TACCTCGAGA GAAGTCCCG GTGACACGGC
6. AGAGCTTTGT GTGCTGGTTC ATCAAGGCAG GACCTGGAGA GTCTGTGATG
7. GTCAGGCTGA CGACTAAGGC CAGGACCCGT TGGTCCCTA ATGAATCTTC
8. AACGGTCTGC CAGTCAGCGC TGGGGGCTGC ACAGCTGCTG AGGTGGCTGC
9. CGGAGGAGC CACCTAAGTC ACCCCTGTG GTGGAGAAGA TGAGGTGCAA
10. GTGCTCTGAG ACAGACATCA GTACTGTCGC CG

B

1. GTGCGAGCAC GTGCGGTTGA CGCTGGCGCA CGGACATCAA TTTTTGCTG
2. AGGGCTACGG CGTCTCCTCC ATTTCCTCCT CGGCGTATGC CGAGCGTGAG
3. CCTGAGTTGG GCCTCGAGAC CTGACTGCTC TGCGGTGCTC GGCACCTGG
4. TANCCGAGGC GGGTCTACGC AGGCCCCGCT GCACCAGATG CTGGAGCTCT
5. CCGGGAGCA CCGTGCTGAC CGCCAGACCC CAGCAGGCTC AAGCTGACCC
6. GTGATGCGGC GCTTCCGAG ACGATCTCT CTGGAGCGGC AGCAGGCTG
7. TGCCCTGACG TCACCGCTGC TGGGGCGCAG AACCGGCGCT CATGGGCAAA
8. GACGCCATCG GCTGCTGACG CGGCTGTGCG CAGCTGCAGT
9. CAGGATGCG CCGTCTCGAC CAGGGCCTCG CAGCTGCGGC
10. AGCTGGCGCG AGGAGTGTCG GGCGCGCTCG CAGGGTCGTC
11. CCGTCCATCT AGGACTGCGA ACCTCCCTGC CCGCTACTG
12. AGCTGGCGCG AGGAGTGTCG GGCGCGCTCG CAGGGTCGTC
13. CGGTCTGACG ACCTCCCTGC CCGCTACTG
14. CCGGATGCC GCGATGCCAC AATCGAGGCA CGAGGCTGAC
15. ACCATCGGAG TCCATGGATGC GCCGACAGCC GCCCTG

C

1. ATGCCACACC ATGCCACACC ATGCCACACC ATGCCACACC ATGCCACACC
2. GTGCTGCGGC ACGAGAAGCC CGGGCGCGCC CGGACATCAA TTTTTGCTG
3. AGGGCTACGG CGTCTCCTCC ATTTCCTCCT CGGCGTATGC CGAGCGTGAG
4. CCTGAGTTGG GCCTCGAGAC CTGACTGCTC TGCGGTGCTC GGCACCTGG
5. TANCCGAGGC GGGTCTACGC AGGCCCCGCT GCACCAGATG CTGGAGCTCT
6. CCGGGAGCA CCGTGCTGAC CGCCAGACCC CAGCAGGCTC AAGCTGACCC
7. GTGATGCGGC GCTTCCGAG ACGATCTCT CTGGAGCGGC AGCAGGCTG
8. TGCCCTGACG TCACCGCTGC TGGGGCGCAG AACCGGCGCT CATGGGCAAA
9. GACGCCATCG GCTGCTGACG CGGCTGTGCG CAGCTGCAGT
10. CAGGATGCG CCGTCTCGAC CAGGGCCTCG CAGCTGCGGC
11. AGCTGGCGCG AGGAGTGTCG GGCGCGCTCG CAGGGTCGTC
12. CGGTCTGACG ACCTCCCTGC CCGCTACTG
13. ATGCCACACC ATGCCACACC ATGCCACACC ATGCCACACC ATGCCACACC
14. GTGCTGCGGC ACGAGAAGCC CGGGCGCGCC CGGACATCAA TTTTTGCTG
15. AGGGCTACGG CGTCTCCTCC ATTTCCTCCT CGGCGTATGC CGAGCGTGAG
16. CCTGAGTTGG GCCTCGAGAC CTGACTGCTC TGCGGTGCTC GGCACCTGG
17. TANCCGAGGC GGGTCTACGC AGGCCCCGCT GCACCAGATG CTGGAGCTCT
18. CCGGGAGCA CCGTGCTGAC CGCCAGACCC CAGCAGGCTC AAGCTGACCC
19. GTGATGCGGC GCTTCCGAG ACGATCTCT CTGGAGCGGC AGCAGGCTG
20. TGCCCTGACG TCACCGCTGC TGGGGCGCAG AACCGGCGCT CATGGGCAAA

D

1. TGGAGACGCT GTGCTAGAACG AGGAGCGGCG GCAGGGCGCC GAGAGGCGCC
2. AGGGCTACGG CGTCTCCTCC ATTTCCTCCT CGGCGTATGC CGAGCGTGAG
3. CCTGAGTTGG GCCTCGAGAC CTGACTGCTC TGCGGTGCTC GGCACCTGG
4. TANCCGAGGC GGGTCTACGC AGGCCCCGCT GCACCAGATG CTGGAGCTCT
5. CCGGGAGCA CCGTGCTGAC CGCCAGACCC CAGCAGGCTC AAGCTGACCC
6. GTGATGCGGC GCTTCCGAG ACGATCTCT CTGGAGCGGC AGCAGGCTG
7. CAGGATGCG CCGTCTCGAC CAGGGCCTCG CAGCTGCGGC
8. AGCTGGCGCG AGGAGTGTCG GGCGCGCTCG CAGGGTCGTC
9. CGGTCTGACG ACCTCCCTGC CCGCTACTG
10. ATGCCACACC ATGCCACACC ATGCCACACC ATGCCACACC ATGCCACACC
11. GTGCTGCGGC ACGAGAAGCC CGGGCGCGCC CGGACATCAA TTTTTGCTG
12. AGGGCTACGG CGTCTCCTCC ATTTCCTCCT CGGCGTATGC CGAGCGTGAG
13. CCTGAGTTGG GCCTCGAGAC CTGACTGCTC TGCGGTGCTC GGCACCTGG
14. TANCCGAGGC GGGTCTACGC AGGCCCCGCT GCACCAGATG CTGGAGCTCT
15. CCGGGAGCA CCGTGCTGAC CGCCAGACCC CAGCAGGCTC AAGCTGACCC
16. GTGATGCGGC GCTTCCGAG ACGATCTCT CTGGAGCGGC AGCAGGCTG
17. ACCATCGGAG TCCATGGATGC GCCGACAGCC GCCCTG
false positive results were observed regularly and that they were caused by contamination of reactions with previously amplified DNA. During the course of the present study, similar problems were encountered and strict precautions for avoiding such contamination had to be taken. The results of this study therefore indicate that although PCR products may be generated by organisms other than *T. gondii*, these vary greatly in size and may be differentiated easily on agarose gels.

In order to investigate the nature of the PCR products obtained from cross reacting organisms, we used two approaches. First, we performed Southern blotting and hybridisation to the 522 bp PCR product from *T. gondii* so as to increase the sensitivity of detection and to obtain insight into the extent of similarity between the PCR products of the different species. The results (table 1) showed that at the stringent hybridisation temperature of 65°C, only the *T. gondii* PCR product hybridised; however, at conditions of lower stringency (at a hybridisation temperature of 60°C) all the PCR products hybridised. Therefore the results indicate that there is little sequence similarity between the PCR products of *T. gondii* and those of the cross reacting species; consequently, if hybridisation at stringent conditions is used for diagnostic purposes, false positives are not evident.

The second approach used to investigate the nature of the PCR products from the cross reacting organisms was cloning and nucleotide sequence determination of the second PCR products obtained from *Mycobacterium tuberculosis, Actinomyces densicola,* and *Nocardia farcinica*. The DNA sequences obtained from these PCR products and that from *T. gondii* are shown in fig 2. Comparisons of these DNA sequences confirmed that, at the nucleotide level, there was no significant similarity between the various PCR products and the nucleotide sequence of the SAG1 gene of *T. gondii*. In conclusion, therefore, although the SAG1 based nested PCR assay generates PCR products from DNA of some other species under certain conditions, it remains effective for the clinical diagnosis of toxoplasmosis if carried out under the stringent conditions described earlier. In any case, the results may be confirmed by performing hybridisation of the PCR products with the toxoplasma probe to substantiate the identity of the PCR products obtained. However, it is important to ensure that adequate measures are taken to avoid any contamination with *T. gondii* DNA or PCR products, or both, as such contamination will inevitably result in false positive diagnoses.

We are grateful to the Felix Foundation for financial support in the form of a Felix Scholarship (MB). The original development of the SAG1 (p30) gene PCR assay was supported by the Medical Research Council.

Misdiagnosis of toxoplasma infection by PCR: fears unfounded.

M Bhalla, J D Johnson, R E Holliman and D Savva

J Clin Pathol 1999 52: 468-470
doi: 10.1136/jcp.52.6.468

Updated information and services can be found at:
http://jcp.bmj.com/content/52/6/468

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/