An investigation of the Peutz-Jeghers gene (LKB1) in sporadic breast and colon cancers

L F Forster, S Defres, D R Goudie, D U Baty, F A Carey

Abstract

Aims—To explore the role of the Peutz-Jeghers gene (LKB1) in sporadic breast and colon cancers.

Methods—Thirty consecutive sporadic carcinomas of the breast and 23 of the colon were selected. DNA was extracted from paraffin wax embedded tissue and analysed for loss of heterozygosity (LOH) at microsatellite markers D19S886 and D19S565 close to the LKB1 gene. Tumours showing LOH were screened for LKB1 mutations by single strand conformational polymorphism (SSCP).

Results—Five breast carcinomas showed LOH (21% and 7% of those informative for D19S886 and D19S565, respectively). Five of the colorectal carcinomas showed LOH (15% and 36% of those informative for D19S886 and D19S565, respectively), with one sample showing allele loss with both markers. Screening of these 10 carcinomas by SSCP identified one migrational shift but sequencing revealed an intronic polymorphism only. Therefore, no coding mutations were found in these carcinomas.

Conclusions—These findings suggest that although allele loss at the LKB1 locus occurs relatively frequently in sporadic breast and colon cancers, mutations do not seem to be a feature.

Keywords: Peutz-Jeghers syndrome; LKB1; colon cancer; breast cancer

First reported in the literature in 1921 by Peutz and further characterised by Jeghers et al in 1949, Peutz-Jeghers syndrome is a rare, autosomal dominant condition with near complete penetrance. It is manifest clinically by the development of mucocutaneous pigmentation and morphologically characteristic gastrointestinal hamartomous polyps.

Initially believed to run a benign course, it has become increasingly apparent since the 1960s that the syndrome is associated with an increased incidence of malignancy, including cancers of the breast, gut, pancreas, ovary, and endometrium. In addition, the malignancies appear to develop at a younger age in those with Peutz-Jeghers syndrome than in the general population. Furthermore, two rare tumours, sex cord tumour with annular tubules and adenoma malignum of cervix, have been associated with the syndrome, with up to 10% of all cases of adenoma malignum occurring in patients with Peutz-Jeghers syndrome. This increased risk was quantified in 1987 by Giardiello and co-workers, who reported an 18-fold increase in the risk of cancer development in Peutz-Jeghers syndrome compared with the general population. This finding has been refined to give relative risks of 18.5 in women and 6.2 in men, with the relatively greater risk in women being attributable to the development of breast and gynaecological malignancy.

Using comparative genomie hybridisation and linkage analysis techniques, the Peutz-Jeghers gene (LKB1) has been mapped to the short arm of chromosome 19 at 19p13. It has been suggested that a second locus on the long arm of the same chromosome is responsible for the syndrome in a minority of patients. The LKB1 gene encodes a serine threonine kinase (STK11). Several mutations of LKB1 have been reported that, in the main, lead to truncations of the protein and resultant loss of enzyme activity. It is this loss of enzyme activity that is believed to be responsible for the Peutz-Jeghers syndrome phenotype. Loss of heterozygosity studies of the hamartomas and adenocarcinomas occurring in patients with Peutz-Jeghers syndrome have identified loss of the wild-type allele, thus conforming with Knudson’s two hit hypothesis of tumorigenesis, and suggesting that the Peutz-Jeghers gene is a tumour suppressor gene. Interestingly, Peutz-Jeghers syndrome is the first cancer susceptibility syndrome that occurs as a result of inactivation of a protein kinase.

Tumour suppressor genes identified in other cancer syndromes (such as familial adenomatous polyposis) are frequently implicated in sporadic cancers. In this context, the aim of our study was to explore the role of LKB1 in sporadically occurring breast and colon cancers. Breast and colon cancers were chosen because they occur with relative frequency in both Peutz-Jeghers syndrome and in the general population. The tumours were screened for loss of heterozygosity (LOH) at 19p13.3 using microsatellite markers and those showing LOH were analysed for mutations of the remaining allele.

Methods

Thirty consecutive, sporadic carcinomas of the breast and 23 of the colon treated by surgical excision in Dundee, Scotland in 1997 were included in our study. In each case, tumour tissue was matched with normal tissue from the same specimen, usually an uninvolved lymph node. DNA was extracted from paraffin wax embedded tissue using a commercial kit (Hybaid, Ashford, Middlesex, UK) and amplified by the polymerase chain reaction (PCR) using the microsatellite markers D19S886 and D19S565. These markers have been shown previously to map closely to the Peutz-Jeghers syndrome locus. The reverse primers were
Table 1 Allele loss and mutation rates for different populations

<table>
<thead>
<tr>
<th>Population</th>
<th>Carcinoma</th>
<th>Number</th>
<th>LOH</th>
<th>Marker</th>
<th>Mutations</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>Breast</td>
<td>62</td>
<td>3/40</td>
<td>D19S565</td>
<td>Nil</td>
<td>12</td>
</tr>
<tr>
<td>Norwegian</td>
<td>Colorectal</td>
<td>75</td>
<td>13/50</td>
<td>D19S886</td>
<td>Nil</td>
<td>15</td>
</tr>
<tr>
<td>Korean</td>
<td>Colorectal</td>
<td>71</td>
<td>10/52</td>
<td>D19S886</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Colorectal</td>
<td>23</td>
<td>9/17</td>
<td>D19S886</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>UK</td>
<td>Breast</td>
<td>30</td>
<td>1/15</td>
<td>D19S565</td>
<td>Nil</td>
<td>Current</td>
</tr>
<tr>
<td></td>
<td>Colorectal</td>
<td>23</td>
<td>4/19</td>
<td>D19S886</td>
<td>Nil</td>
<td></td>
</tr>
</tbody>
</table>

LOH, loss of heterozygosity, given as allele loss/number informative.

Discussion

The existence of cancer associated syndromes provides direction for the study of sporadic cancers. Accumulating epidemiological evidence suggests that Peutz-Jeghers syndrome predisposes to cancer development, at sites both within and outside the gastrointestinal tract. There is increasing interest in a “hamartoma–adenoma–carcinoma” sequence to explain the development of cancer in patients with Peutz-Jeghers syndrome. However, many of the malignancies occur at sites outside the gastrointestinal tract and those occurring within do not necessarily arise from hamartomas.

The recent literature contains several studies that explore the role of the Peutz-Jeghers syndrome gene in sporadic cancers; in particular, looking for allele loss and evidence of mutations at this locus. The results show some inconsistencies. Most studies show a notable frequency of allele loss but mutational rates are variable between populations (table 1). No mutations were found in a UK study of 62 sporadic breast cancers,12 none in a study from Norway of 75 colon cancers,13 and only one in an Italian series of 71 colorectal cancers.16 However, a study from Korea gives contradicting results, identifying seven mutations in 23 colorectal cancers.15 Interestingly, these workers separated their series into right and left sided colorectal carcinomas and found that the mutations were present in the left sided carcinomas only (seven of 13). This said, their incidence of mutations is still higher than that reported elsewhere without taking anatomical segregation into account. Why this study should be different from the others remains unexplained, but it could be related to the different incidence of colorectal carcinoma in Korea and to population differences, with all the other studies having been performed on Western populations. Other studies of testicular and gastric cancers have found similar results to the Western studies.14, 17 Indeed, a recent large study of 129 cancers from a variety of sites identified only three mutations.18

Our findings are in keeping with other work on Western populations and with the only previous UK study on breast cancers. To date, similar work has not been reported on colon cancers in a UK population. No mutations were detected in our study. However, we did identify an intronic variation, confirming that our methods were capable of detecting sequence changes. It could be that mutations are occurring at the LKB1 locus that cannot be detected by SSCP analysis—for example, large genomic rearrangements. Alternatively, it is possible that other mechanisms such as promoter methylation are occurring as the “second hit” phenomenon.

Thus, although it seems that allele loss at LKB1 in sporadic breast and colon cancers is a
relatively frequent event, mutations at this locus appear not to be a feature. Hemizygosity for LKB1, even in the absence of a mutation, may in itself be deleterious. Alternatively, another as yet unspecified gene might be involved.

An investigation of the Peutz-Jeghers gene (LKB1) in sporadic breast and colon cancers

L F Forster, S Defres, D R Goudie, D U Baty and F A Carey

J Clin Pathol 2000 53: 791-793
doi: 10.1136/jcp.53.10.791

Updated information and services can be found at:
http://jcp.bmj.com/content/53/10/791

These include:

References
This article cites 17 articles, 7 of which you can access for free at:
http://jcp.bmj.com/content/53/10/791#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Cancer: small intestine (32)
- Dermatology (222)
- Colon cancer (231)
- Molecular genetics (355)
- Breast cancer (506)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/