Preoperative histological classification of primary lung cancer: accuracy of diagnosis and use of the non-small cell category

S L Edwards, C Roberts, M E McKean, J S Cockburn, R R Jeffrey, K M Kerr

Abstract
Aims—To compare the preoperative classification of lung carcinoma made on cytological and histological specimens with the postoperative classification made on the resected specimen. In addition, to find out how often the term “non-small cell lung cancer, not otherwise specified” (NSCLC) was used, and in such cases to note the final diagnosis.

Methods—Between 1991 and 1995, 303 patients had a lung resection in Aberdeen for primary carcinoma. For each patient, the departmental records were examined for preoperative specimens (cytological and histological). A note was made of whether each specimen was positive or negative for malignancy and, if positive, what the cell type was. Where patients had more than one sample submitted, the most specific result was taken.

Results—Fifty four per cent of patients had a correct specific preoperative diagnosis of malignancy, whereas 34% were labelled as NSCLC. Patients with squamous carcinoma were more likely to have a diagnosis of malignancy (88%) that was specifically correct (75%). Patients who had adenocarcinoma were less likely to have a preoperative diagnosis of malignancy (64%) that was specifically correct (35%). For those in whom a diagnosis of NSCLC was made, 55% turned out to have adenocarcinoma whereas 24% had squamous carcinoma.

Conclusions—By adhering strictly to criteria, a high accuracy of diagnosis can be achieved for squamous carcinoma, but the diagnosis of adenocarcinoma seems to be more of a challenge. NSCLC is a useful and appropriate classification, the use of which reduces the rate of inaccurate specific diagnosis. There are occasions when pathologists can provide a more accurate diagnosis by being less precise.

(J Clin Pathol 2000;53:537–540)

Keywords: lung cancer; accuracy of classification; non-small cell

The WHO (1999) classification of lung cancer is based upon differentiation in the whole tumour, and has no provision for making a non-specific diagnosis that could be refined if further material becomes available. Lung cancers are frequently heterogeneous and biopsy specimens provide only a small amount of tissue from which to make a preoperative diagnosis. Only 10–15% of patients with lung cancer will have the tumour resected and the preoperative tumour classification confirmed. Therefore, most patients’ treatment will be based upon the diagnosis from preoperative specimens alone. In a previous study, a group of eight pathologists, each with an interest in lung cancer, compared their classification of primary lung cancer on preoperative bronchial biopsy specimens with the agreed diagnosis on the subsequent resected specimen. Their diagnostic accuracy for adenocarcinoma was low (50%), and less than that for squamous carcinoma (75%). Similar results have been found by others. It is of concern, therefore, that if 85–90% of patients have a diagnosis made on preoperative specimens alone, with the likelihood of some degree of inaccuracy in tumour classification from such specimens, then epidemiological studies might be based on flawed data.

Thomas and colleagues advocated the use of the category “non-small cell carcinoma, not otherwise specified” (NSCLC) in cases where definite features of differentiation were absent, but the lesion lacked features of small cell undifferentiated carcinoma. This increased their diagnostic accuracy by 10–15%. Many centres have now adopted this approach. It has been shown that pathologists are reliable at making the distinction between small cell and other types of lung carcinoma on biopsy specimens, but have more difficulty agreeing among themselves about further classification of those cases that are not small cell carcinoma. At present there is no need, from a therapeutic perspective, to subclassify NSCLC. With the introduction of neoadjuvant chemotherapy, however, pathologists might well be required to subclassify the non-small cell malignancies because the management protocols might differ for different tumour types.

The aims of our study were to compare the preoperative classification of lung carcinoma made on cytological and histological specimens with the postoperative classification made on the resected specimen, and to determine how often, in a single department, the classification NSCLC was used and, when this occurred, what the final diagnosis was.

Methods
Between 1991 and 1995, 303 patients had a lung resection in Aberdeen for primary carcinoma. All of these tumours have been reviewed and classified by one of us (KMK), according to WHO criteria, and the information stored
Table 1 Postoperative tumour classification on resected specimens

<table>
<thead>
<tr>
<th>Type of Tumour</th>
<th>No. of Patients (n = 303)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenocarcinoma</td>
<td>118</td>
<td>39%</td>
</tr>
<tr>
<td>Squamous carcinoma</td>
<td>108</td>
<td>36%</td>
</tr>
<tr>
<td>Adenosquamous carcinoma</td>
<td>19</td>
<td>6%</td>
</tr>
<tr>
<td>Large cell undifferentiated carcinoma</td>
<td>13</td>
<td>4%</td>
</tr>
<tr>
<td>Neuroendocrine tumours</td>
<td>13</td>
<td>4%</td>
</tr>
<tr>
<td>Other tumour types</td>
<td>32</td>
<td>11%</td>
</tr>
</tbody>
</table>

*Final diagnosis on resected specimens.

Table 2 Types of preoperative specimen submitted

<table>
<thead>
<tr>
<th>Type of Specimen</th>
<th>All patients (n = 237)</th>
<th>Patients with squamous carcinoma* (n = 81)</th>
<th>Patients with adenocarcinoma* (n = 94)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytology specimens only</td>
<td>49%</td>
<td>25%</td>
<td>76%</td>
</tr>
<tr>
<td>Cytology + biopsy specimens</td>
<td>46%</td>
<td>68%</td>
<td>21%</td>
</tr>
<tr>
<td>Biopsy specimens only</td>
<td>4%</td>
<td>7%</td>
<td>3%</td>
</tr>
</tbody>
</table>

*Final diagnosis on resected specimens.

Table 3 Comparison of preoperative and postoperative classification of lung cancer

<table>
<thead>
<tr>
<th>Type of Diagnosis</th>
<th>All patients (n = 170)</th>
<th>Patients with squamous carcinoma* (n = 71)</th>
<th>Patients with adenocarcinoma* (n = 60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct specific diagnosis given</td>
<td>54%</td>
<td>75%</td>
<td>35%</td>
</tr>
<tr>
<td>NSCLC</td>
<td>34%</td>
<td>20%</td>
<td>53%</td>
</tr>
<tr>
<td>Incorrect specific diagnosis given</td>
<td>11%</td>
<td>4%</td>
<td>10%</td>
</tr>
<tr>
<td>Discrepancy between cytology and biopsy specimen classification</td>
<td>1%</td>
<td>1%</td>
<td>2%</td>
</tr>
</tbody>
</table>

*Final diagnosis on resected specimens.

NSCLC, non-small cell lung cancer, not otherwise specified.
taken, 138 had a preoperative tissue diagnosis of malignancy by cytology (61%). Although the “correct specific diagnosis” frequency was lower when compared with biopsy material, the differences between squamous and adenocarcinoma are maintained. NSCLC was a more frequent classification, particularly in adenocarcinoma.

Table 6 shows a comparison of preoperative diagnosis of squamous carcinoma, adenocarcinoma, and NSCLC with final tumour classification.

Discussion
The aim of our study was to compare preoperative tumour classification with the final typing of surgical specimens, and examine the usage of the diagnosis NSCLC in the initial investigation and its outcome on surgical resection specimens.

The use of the term non-small cell lung cancer was first suggested by Chuang et al in 1984,7 but it was little used in the literature until 1993, when Thomas and colleagues8 again supported its use. In the latter study, the application of this less specific category improved diagnostic accuracy by 10–15%. Two further studies9,10 attributed to histopathologists an excellent ability to distinguish between small cell carcinoma and NSCLC, and again advocated the use of the term NSCLC, but acknowledged the difficulties in preoperative typing of, in particular, adenocarcinoma, as shown by others.11

It is difficult to compare findings from the various published studies with each other and with our own results. Much of the published work concentrates on different methods of cytological preparation,12 13 14 15 considers specimens rather than patients,14 16 and might not have a surgical specimen on which to prove the final tissue diagnosis.17 There are also differences depending on whether accuracy refers to the number of correct preoperative diagnoses given or the number of occasions the final diagnosis was made correctly preoperatively.

To date, ours is the largest series in the literature, particularly because all cases included had a definitive tumour classification made on a surgical resection specimen. The frequency of submission of cytology and biopsy specimens reflects the presence or absence of visible tumour at bronchoscopy, and the tendency for most squamous carcinomas to be central and most adenocarcinomas peripheral in location.

Our overall yield for malignancy of 72% compares with 71% found by Clee et al.18 Their yield for cytology specimens was also 71%, although fibreoptic biopsy specimens gave only 58% malignancy, whereas ours were 61% and 73%, respectively. Our biopsy figure is nearer to that of Payne et al,19 who found a 69% yield on biopsy specimens; however, they included rigid bronchoscopy specimens, which are generally found to give higher yields. Our cytology specimens include a different range of techniques from those used by Clee et al,18 and cannot account for different practices between bronchoscopists. Truong20 reported 66% sensitivity for malignancy in cytological specimens.

Comparison of accuracy rates is difficult because we used the category NSCLC. All other studies have required allocation of a specific classification in each case. Thus, although our “correct specific diagnosis” rates might appear low in some instances, our rates of “incorrect specific diagnosis” are also very low. Furthermore, our final tumour classification includes very small numbers of large cell undifferentiated carcinoma and a small number of rarities such as carcinosarcoma, mixed tumour (excluding adenosquamous carcinoma), and basaloid carcinoma. Other series seem not to have these unusual tumours and have a higher proportion of both small cell and large cell tumours. Large case numbers of small cell carcinoma will increase overall accuracy because they are recognised as being particularly reliably classified on bronchoscopically derived material.21 In general, large cell undifferentiated carcinoma is not a diagnosis that can, or should, be made preoperatively because it requires examination of the whole tumour to exclude evidence of differentiation, especially of adenocarcinoma. The diagnosis of large cell undifferentiated carcinoma was made preoperatively in a small number of patients in our study and almost all of these, and the rare
tumours in the “others” category (table 1), account for most of our incorrect specific preoperative diagnoses. The same would be true for pleomorphic/spindle cell carcinomas.

There is general agreement that squamous carcinoma and small cell carcinoma have the highest accuracy of diagnosis in small preoperative specimens, whereas adenocarcinoma is less accurately diagnosed. Payne and colleagues reported 50% accuracy, whereas Truong and colleagues diagnosed 84% of their adenocarcinoma correctly. Rather against the trend, Tanaka and colleagues diagnosed 84% of their adenocarcinomas correctly. We correctly diagnosed just 35% of our adenocarcinomas, regardless of specimen type. Overall, however, because of our use of the NSCLC category we gave an incorrect label very infrequently unlike, presumably, most other authors. Although the number of biopsied adenocarcinomas was low, our “incorrect specific” rate was relatively high (28%). By trying to give a specific diagnosis when reliable criteria are absent, more errors will be made, particularly with adenocarcinomas. A more frequent use of the NSCLC category will reduce the number of incorrect specific diagnoses, as reflected in our data on cytological diagnosis of adenocarcinoma.

When we made a specific preoperative diagnosis of squamous carcinoma or adenocarcinoma this was, in most cases, correct (87% and 80%, respectively). Only Chuang and colleagues express their data this way and, rather surprisingly, were correct in only 66% of 32 squamous carcinomas but were correct in 93% of 44 adenocarcinomas diagnosed on bronchoscopically derived material. Not surprisingly, 21 of their 24 diagnoses of large cell undifferentiated carcinomas proved to be wrong.

Although our rates of correct specific preoperative diagnosis might appear low, this is against a background of very robust postoperative diagnosis using only surgical resection specimens. Included in the series are rare tumour types almost impossible to diagnose preoperatively. Furthermore, the presence of preoperative diagnoses of large cell undifferentiated carcinoma will always make accuracy figures worse.

High accuracy of diagnosis can be achieved for squamous carcinoma by adhering strictly to criteria for squamous differentiation (keratin, intercellular bridges). Diagnosis of adenocarcinoma seems to be more of a challenge. Mucin and glands, if present, permit the diagnosis but are frequently not present in bronchial biopsy or cytological material and, as Thomas and colleagues pointed out, other “so-called” adenocarcinoma criteria are very unreliable. Thus, we agree that NSCLC is a useful and more appropriate classification to use, reflecting the view that it is sometimes better to be more accurate by being less precise. We found it provided the best classification that we could give in 34% of our patients and that, when used, 55% of patients would have an adenocarcinoma, while 24% would eventually prove to have squamous carcinoma. We shall continue to use this classification and support moves to account for this category in disease coding systems for registering diagnoses of lung cancer. Epidemiological data will be more useful if based upon more robust histological diagnosis.

Preoperative histological classification of primary lung cancer: accuracy of diagnosis and use of the non-small cell category

S L Edwards, C Roberts, M E McKean, J S Cockburn, R R Jeffrey and K M Kerr

J Clin Pathol 2000 53: 537-540
doi: 10.1136/jcp.53.7.537

Updated information and services can be found at:
http://jcp.bmj.com/content/53/7/537

These include:

References
This article cites 8 articles, 6 of which you can access for free at:
http://jcp.bmj.com/content/53/7/537#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Lung cancer (oncology) (120)
Lung cancer (respiratory medicine) (120)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/