M2-AMA do not directly produce ANCA indirect immunofluorescence patterns

The importance of distinguishing atypical cytoplasmic indirect immunofluorescence patterns from the “classic”, centrally accentuated cytoplasmic immunofluorescence pattern on ethanol fixed human neutrophils has recently been re-emphasised. Auto-antibodies to other cytoplasmic autoantigens such as antimitochondrial antibodies (AMA), antismooth muscle antibodies, and antiribosomal-P antibodies have also recently been reported to produce atypical cytoplasmic immunofluorescence patterns on ethanol fixed human neutrophils. However, an alternative explanation is that the atypical cytoplasmic immunofluorescence patterns might be produced by concomitant antineutrophil cytoplasmic antibodies (ANCA) in these sera, especially in cases of autoimmune liver disease. Therefore, we investigated: (1) whether sera containing AMA with confirmed M2 specificity produced positive indirect immunofluorescence patterns on ethanol fixed human neutrophils. However, an alternative explanation is that the atypical cytoplasmic immunofluorescence patterns might be produced by concomitant antineutrophil cytoplasmic antibodies (ANCA) in these sera, especially in cases of autoimmune liver disease. Therefore, we investigated: (1) whether sera containing AMA with confirmed M2 specificity produced positive indirect immunofluorescence patterns on ethanol fixed human neutrophils.

Table 1 Results of M2-AMA ELISA, ANCA IIF and ANCA Combi-kit® ELISA

<table>
<thead>
<tr>
<th>Specimen</th>
<th>M2-AMA</th>
<th>ANCA IIF pattern (titre)</th>
<th>ANCA Combi-kit® ELISA (OD ratio)</th>
<th>Liver biopsy result</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>High positive</td>
<td>Negative</td>
<td>Anti-BPI (2.47)</td>
<td>PBC</td>
</tr>
<tr>
<td>21</td>
<td>High positive</td>
<td>Negative</td>
<td>Anti-BPI (2.79)</td>
<td>PBC</td>
</tr>
<tr>
<td>22</td>
<td>High positive</td>
<td>Negative</td>
<td>Anti-BPI (2.97)</td>
<td>Not done</td>
</tr>
<tr>
<td>23</td>
<td>High positive</td>
<td>Negative</td>
<td>Anti-BPI (2.79)</td>
<td>Not done</td>
</tr>
<tr>
<td>24</td>
<td>High positive</td>
<td>Negative</td>
<td>Anti-BPI (2.97)</td>
<td>Not done</td>
</tr>
<tr>
<td>25</td>
<td>High positive</td>
<td>Negative</td>
<td>Anti-BPI (2.97)</td>
<td>Not done</td>
</tr>
<tr>
<td>26</td>
<td>High positive</td>
<td>Negative</td>
<td>Anti-BPI (2.97)</td>
<td>Not done</td>
</tr>
<tr>
<td>27</td>
<td>High positive</td>
<td>Negative</td>
<td>Anti-BPI (2.97)</td>
<td>Not done</td>
</tr>
<tr>
<td>28</td>
<td>High positive</td>
<td>Negative</td>
<td>Anti-BPI (2.97)</td>
<td>Not done</td>
</tr>
<tr>
<td>29</td>
<td>High positive</td>
<td>Negative</td>
<td>Anti-BPI (2.97)</td>
<td>Not done</td>
</tr>
<tr>
<td>30</td>
<td>High positive</td>
<td>Negative</td>
<td>Anti-BPI (2.97)</td>
<td>Not done</td>
</tr>
<tr>
<td>31</td>
<td>High positive</td>
<td>Negative</td>
<td>Anti-BPI (2.97)</td>
<td>Not done</td>
</tr>
<tr>
<td>32</td>
<td>High positive</td>
<td>Negative</td>
<td>Anti-BPI (2.97)</td>
<td>Not done</td>
</tr>
</tbody>
</table>

ANCA Combi-kit® ELISA OD (optical density) ratio: positive ≥ 1, negative < 1.

†Concomitant ANA staining (1/40 titre) on ethanol fixed human neutrophils with a nuclear membrane pattern was present.

ANCA, antineutrophil cytoplasmic antibodies; BPI, bactericidal/permeability increasing protein; ELISA, enzyme linked immunosorbent assay; IF, indirect immunofluorescence; PBC, primary biliary cirrhosis.

Raised plasma parathyroid hormone related peptide in gastric adenocarcinoma

We report a case of humoral hypercalcemia associated with a rapidly growing gastric carcinoma. To our knowledge, this is the first such case of gastric carcinoma reported with raised plasma parathyroid hormone related peptide (PTHrP) and absent bone metastases.

A 69 year old woman presented with fatigue and intermittent sharp epigastric pain for one week. Upper gastrointestinal radiographs and endoscopy demonstrated a necrotic, friable mass in the mid stomach. Biopsy of the mass and a surrounding satellite...
polyoid lesion showed poorly differentiated adenocarcinoma and gastric adenoma with high grade dysplasia, respectively (fig 1). Four weeks after the first symptoms had arisen the liver edge was palpable 3 cm below the costal margin. Computed tomographic scan of the abdomen demonstrated several hypodense lesions in the liver and aortic adenopathy compatible with metastases. The following results were found: haematoctrit, 0.24; white blood cell count, 12.7 × 10^9/litre; platelets, 460 × 10^9/litre; calcium, 2.54 mmol/litre; albumin, 31 g/litre; international normalised ratio, 1.2; alkaline phosphatase, 1075 units/litre; alanine amino transferase, 16 units/litre; total bilirubin, 10.26 µmol/litre; lactate dehydrogenase, 1765 units/litre; carcinoembryonic antigen, 327 µg/litre; ferritin, 302 µg/litre; Fe, < 2 µmol/litre; and total iron binding capacity, < 21 µmol/litre. Chest x ray was negative. Two weeks later the patient developed mental confusion and dehydration. Serum calcium was 2.8 mmol/litre, phosphorus 0.5 mmol/litre, and albumin 26 g/litre. With intravenous hydration and pamidronate (90 mg), serum calcium rapidly became normal and the patient's mental status returned to baseline. Neither radionucleic bone scan nor magnetic resonance scan of the brain suggested metastases. The intact PTH (IRMA; Nichols Institute) was 5.4 pmol/litre (normal, 10–65). However, PTHrP (1-40 IRMA; Nichols Institute) was 6 ng/litre (normal < 1.3). The patient died of progression of the disease.

Figure 1 The figure shows representative tissue from multiple gastric biopsies in which the expression of parathyroid hormone related peptide (PTHrP) was investigated using a horseradish peroxidase labelled polyclonal rabbit antibody directed against amino acids 1–34 of human PTHrP. (A) Gastric adenocarcinoma showing expression of PTHrP and (B) gastric adenoma showing no expression of PTHrP.

and adenomas did not express PTHrP. Our case is consistent with the findings of Alipov et al because cancer cells expressed PTHrP, whereas adenomas did not (fig 1). Our case is notable for rapid clinical deterioration coupled with raised tissue and plasma PTHrP. These results suggest that PTHrP expression is associated with poor prognosis in gastric cancer. Whether PTHrP plays a direct role in cancer progression or is a byproduct of oncogene activation (for example, ras and src) remains to be determined.

GEORGE ENGELICH
NIALL SWAN
KEVIN L HARTSHORN
Boston University School of Medicine and Boston Medical Center, Departments of Medicine and Pathology, 80 East Concord Street, Boston, MA 02118, USA

ELISA is the superior method for detecting antineutrophil cytoplasmic antibodies in the diagnosis of systemic necrotising vasculitis

Dr Harris's results showed that indirect immunofluorescence is a more sensitive technique than antigen specific enzyme linked immunosorbent assay (ELISA) for the diagnosis of systemic necrotising vasculitis (70% v 50%) but that ELISAs have a higher positive predictive value (87% v 76%). It was the greater sensitivity of indirect immunofluorescence that prompted the “Inter-

eational consensus statement on testing and reporting antineutrophil cytoplasmic antibodies (ANCA)” to require all laboratories to screen for ANCA by indirect immunofluorescence, but to confirm the specificity of fluorescent sera by ELISA. In our hands, adherence to the minimum guidelines of the consensus statement resulted in a higher positive predictive value than either indirect immunofluorescence or ELISA alone (62% compared with 44% and 50%, respectively). Screening by indirect immunofluorescence has the additional advantages of being a quicker and cheaper technique than using the two commercial antigen specific ELISAs that are usually required and, furthermore, indirect immunofluorescence might demonstrate coincidental but unsuspected autoantibodies such as antinuclear antibodies. We believe that the use of ELISAs alone to diagnose a systemic necrotising vasculitis is analogous to testing for systemic lupus erythematosus with anti-double stranded DNA antibodies rather than initially screening for antinuclear antibodies by indirect immunofluorescence.
The fact that the sensitivity of ELISA ANCA falls as inactive cases are added to active cases implies that ELISA more quickly becomes negative as active disease settles, whereas immunofluorescence remains positive. This observation suggests that ELISA is also a better tool in following disease activity after diagnosis and initiation of treatment.

Savige et al reported their finding of a higher positive predictive value if results of ELISA and immunofluorescence ANCA are combined, whereas it was not found in this study. In fact, combining immunofluorescence and ELISA ANCA resulted in a lower positive predictive value than ELISA ANCA alone. It would be of interest to review the data Savige et al have used.

Based on our results, we conclude that ELISA ANCA is the principal serological test for the diagnosis of systemic necrotising vasculitis. Immunofluorescence ANCA should be avoided because its inferior specificity and poor positive predictive value open the way to incorrect or delayed diagnosis and treatment. We would like to restate the importance of recognising the different clinical syndromes caused by systemic necrotising vasculitis and of appropriate histological testing even with a positive or negative ELISA ANCA result.

We have not investigated the value of ANCA with respect to the diagnosis of other conditions, such as inflammatory bowel disease, and so we do not recommend which tests should be used in a particular laboratory. We have only compared ELISA and immunofluorescence ANCA in a particular disease (systemic necrotising vasculitis) and found ELISA to be superior by all criteria. Our results indicate that the ‘International consensus statement on the testing and reporting of ANCA’ should be revisited.

The effect of using templates on the information included in histology reports on specimens of uterine cervix taken by loop excision of transformation zone (LETZ)

I should again like to congratualte Dr Al-Nafussi and her colleagues for providing us with an interesting and stimulating paper and to take the opportunity to add some comments of my own. Following earlier correspondence in the journal, I have sought to develop a system of standardised phrases that are used in reporting the features listed in the paper by Reid et al. Secretarial or medical staff can enter a short code of up to 35 letters, which is expanded electronically to produce a phrase or sentence in coherent English. In this department, we use the Telepath system, which allows by more than one such code to be used in any given report. Snomed codes are linked to the codes and automatically included in the departmental database. Furthermore, it is possible to recover reports in which a given standardised phrase or sentence has been used. This allows us to identify the proportion of cases with specific findings such as involved specimen edges, traumatised squamocolumnar junctions, or the presence of endocervical epithelium or squamous epithelium at the end of the endocervical canal. Because these are only minor features that are to some extent under the control of the colposcopist or surgeon, it is envisaged that we can then provide feedback on the adequacy of specimen derived from particular clinics to the responsible consultants.

Finally, in addition to the ectocervical and endocervical edges we routinely comment on the presence of CIN (cervical intraepithelial neoplasia) at the deep lateral edge. This is the edge that runs between the superior, endocervical edge of the specimen to the lateral, ectocervical edge of the specimen. Although this is composed of cervical stroma with variable degrees of cautery artefact, we regard this involvement as being important because there is the potential of residual disease being covered in the reepithelialisation process, so that it will not be detected on colposcopy or cytological surveillance. Residual disease, if undetected, has been suggested as a cause of later invasive cervical carcinoma in patients treated for CIN.

S BRADBURN

MK HEATLEY

Department of Pathology, 5th Floor, Duncan Building, The Royal Liverpool University Hospital, Prescot Street, Liverpool L7 8XP, UK

Some problems found in HIV-1 RNA quantification

The polymerase chain reaction (PCR) based assay of human immunodeficiency virus type 1 (HIV-1) RNA is now commercially available and is used widely for the assessment of antiretroviral treatments. The kit is called the AmplicorTM HIV-1 monitor test kit version 1.0 from Roche Diagnostics (Tokyo, Japan). However, this system is not sensitive enough for the accurate measurement of genetic subtypes A and E, and it gives falsely low titres for these virus subtypes.1 To surmount this problem, additional gag primers (AG primers) have been prepared previously to aid for research use (Ver. 1.0 plus). Furthermore, a new improved version (Ver. 1.5) was developed recently, which is said to yield accurate results not only on subtype B but on subtypes A and E. With the Ver. 1.0 kit, adding the AG primer set from the Ver. 1.5 kit to the PCR master mixture containing the Ver. 1.0 primer set makes it possible to amplify even subtype A and E viruses. In the Ver. 1.5 kit, the downstream primer is 12 bases downstream from the Ver. 1.0 primer position, whereas the upstream primer position is unchanged but the primer has two base substitutions. In our laboratory, we have examined over 1500 samples (148 cases) using the Ver. 1.0 kit, and among them, 150 samples (65 cases) were also measured with the Ver. 1.0 plus kit. As expected, most cases with the HIV-1 subtypes A and E, which could not be measured with the Ver. 1.0 kit, could be measured with the Ver. 1.0 plus kit. However, we were interested in a few cases that gave unexpected results. Clinically and epidemiologically, these patients are not different from our other patients infected with HIV-1 subtypes A or E. As shown in Table 1, case 1 gave equivocal results with all of the kits but in cases 2 to 5 higher results were obtained with the Ver. 1.0 plus kit than with the Ver. 1.0 kit. We measured these specimens with the Ver. 1.5 kit (kindly provided by Roche Diagnostics, Japan). In these five cases, all but case 2 revealed equivalent values with both the Ver. 1.0 plus and Ver. 1.5 kits. Unexpectedly, in case 2 only the Ver. 1.0 plus kit yielded the anticipated result.

On the other hand, in case 6, a higher result was obtained with the Ver. 1.0 kit but not with the Ver. 1.0 plus or Ver. 1.5 kits. An additional two cases showed a similar trend, although the degree of discrepancy was less severe (data not shown).

Nucleotide sequences of primer region

Upstream primer region

| SK462 primer | AGGTTGAGGAGATCGGAGGAGTCAAGATT
| Consensus B | ———G————G——————G——————
| Consensus A | ———G————G——————G——————
| Consensus E | ———G————G——————G——————
| Case 1 | ———G————G——————G——————
| Case 2 | ———G————G——————G——————
| Case 3 | ———G————G——————G——————
| Case 4 | ———G————G——————G——————
| Case 5 | ———G————G——————G——————
| Case 6 | ———G————G——————G——————

Downstream primer region

| SK431 primer | AGAGAGACGCGAGGAGTCAAGATT
| Consensus B | ———G————G——————G——————
| Consensus A | ———G————G——————G——————
| Consensus E | ———G————G——————G——————
| Case 1 | ———G————G——————G——————
| Case 2 | ———G————G——————G——————
| Case 3 | ———G————G——————G——————
| Case 4 | ———G————G——————G——————
| Case 5 | ———G————G——————G——————
| Case 6 | ———G————G——————G——————

Figure 1 The alignment of each primer region. The SK462 and SK431 primers were used in the AmplicorTM HIV-1 monitor test Ver. 1.0 kit. The sequences of these primers were obtained from Roche Diagnostics. Consensus sequences were reproduced from the HIV Sequence Database (see text). The sequences shown in this table are from the sense strand.
To clarify the cause of these discrepant results, sequence analysis of the amplified regions of these cases was performed. The nucleotide sequences of these cases were found to be homologous to subtype A or E virus when they were aligned with the consensus sequences of HIV-1 subtypes B, C, and E obtained from the HIV Sequence Database WWW home page (Sequences. Online) (http://hiv-web.nlm.nih.gov). Surprisingly, the sequences of the primer regions of all cases were completely identical (fig 1). In conclusion, cases 2 and 6 are measurable by one of these kits, Ver. 1.0 plus and Ver. 1.0, respectively; case 1 is measurable by all kits despite having the same nucleotide sequence in the primer regions as the other cases. The results of sequence analysis of the primer regions suggests that the minor difference in sequence between the virus and the primers does not always affect amplification efficiency in these kits. Although such cases might form a minor population among HIV-1 infections, these results indicate that some cases cannot be measured by a single kit. As far as we have experienced, even if one kit fails to measure virus, the other will yield the expected viral load, as judged by disease history, CD4 count, treatment, and so on, suggesting that these kits are mutually complementary. If other methods, such as nucleic acid sequence-based amplification or branched DNA (bDNA) systems, are available, it would be useful to test with them. We have found some cases of subtype A or E that have shown a higher viral load with bDNA (Chiron Quan-tiplex™ HIV RNA 2.0 assay Chiron Corporation, Emeryville, California, USA) than the Amplicor HIV-1 monitor test kit (data not shown). In patients infected with subtype B virus, the correlation between the Amplicor HIV-1 monitor test kit and the bDNA method was excellent (r=0.904; n=21). In conclusion, the minor difference in the three versions of the Amplicor HIV-1 monitor test kit is the primer set, we emphasise that for accurate quantitative measurement using this kit various additional primer sets that can amplify similar regions are needed.

SATOKI YOSHIDA
NOZOMI YUSA
NORIHARU SATO
Department of Laboratory Medicine, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan

MIKEO GOTO
AIKICHI IWAMOTO
Department of Infectious Diseases and Applied Immunology, Institute of Medical Science, University of Tokyo

1 Triques K, Coste J, Perret JL, et al. Efficiencies of four versions of the Amplicor HIV-1 monitor test for quantification of different subtypes of human immunodeficiency virus type 1. J Clin Microbiol 1999;37:1110–14. For the Amplicor HIV-1 monitor test kit (data not shown). In patients infected with subtype B virus, the correlation between the Amplicor HIV-1 monitor test kit and the bDNA method was excellent (r=0.904; n=21). In conclusion, the minor difference in the three versions of the Amplicor HIV-1 monitor test kit is the primer set, we emphasise that for accurate quantitative measurement using this kit various additional primer sets that can amplify similar regions are needed.

Next of kin clinics
We read with interest the considered views of Professor Vanezis and Dr Leadbeatter regarding the role of forensic pathologists dealing with the next of kin of those whose deaths are subject to medicolegal investigation. It might be of interest to your readers to know that the issues raised by the authors have been dealt with at the department of forensic medicine, at Westmead in Sydney for the past decade.

The department offers a specialist grief counselling service, targeting the needs of families attempting to come to terms with the complications of a coronial investigation at a time of crisis and great distress. The counsel-
ors routinely contact the next of kin in all cases, discussing with them forensic and coro-

nial procedures and outlining the counselling service, which includes individual sessions, group debriefing, and court support. The service operates with the full support of the New South Wales State Coroner, but is funded solely by the department of forensic medicine.

Professor Vanezis and Dr Leadbeatter propose the provision of “next of kin clinics”, conducted by the pathologist, to discuss postmortem findings. Such a service is regu-

larly provided at Westmead as part of the counselling unit’s brief. Although thoroughly endors-
ing the authors’ remarks on the need for accurate and timely information, we have found that several alterations need to be made to the model broadly outlined by the authors for the families to gain maximum benefit from the information sessions. These include:

- Ongoing contact between the family and the counsellor from the time of necropsy to the receipt of its results, to ensure that the family is confident that forensic staff will be both frank and reliable in the delivery of information and support.
- A preliminary meeting between the family and the counsellor, to ensure that all the family’s concerns are identified, thereby ensuring that the meeting with the pathologist is as comprehensive as possible.
- The presence of the counsellor at the meeting as mediator and support person for the family. Such a mediation role involves ensuring that all the family’s issues are adequately considered, that the tendency some pathologists have to use jargon is kept under control, and that clarification is sought where necessary.

We have found that these alterations are necess-

ary to ensure that the emotional needs of the family and the occasionally unavoidable power imbalance between grieving relatives and a medical specialist are properly dealt with. This latter concern is most clearly seen in the reluctance of non-medically trained relatives to seek clarification and to admit to doubts and concerns while speaking with a representative of “the system”, however well intentioned.

We have been pleased with the success of the service over many years, and self reported feedback from clients suggests both a sense of confidence in the forensic system and in coronial findings as a result. We are delighted that our colleagues in the Northern Hemi-

ter are to be congratulated on their valuable contribution to this important field of practice.

The authors reply
Dr Dryson et al are to be congratulated on setting up what appears to be a splendid service for relatives, and we note with interest their comments, particularly on how we could modify our work practice in the UK.

We have always been conscious of the fact that when running such clinics we have had to tread very carefully, bearing in mind the sen-

sitivity of relatives, as well as our medicolegal obligations to the investigating authorities. The system we have adopted is designed to provide information to the next of kin regarding the necropsy performed on their loved one, and to answer any concerns they might have regarding our findings. It is not designed to be a specialist grief counsel-

ling service. We have intentionally not attempted to take this approach because as pathologists we are not grief counsellors.

Nevertheless, it would be extremely useful for all doctors to have some formal training in dealing with the bereaved. As you can appreciate, we have given some thought to the structure we have adopted, and what our role would be in such clinics in relation to our own situation in the west of Scotland, and obviously we would like to see the service that we provide extended to other areas in the UK. As we have stated in our paper, the serv-

ice we offer at the present time, albeit limited when compared with the one offered in Aus-

tralia, is nevertheless very welcome and we believe of some benefit to the next of kin.

PETER VANEZIS
Department of Forensic Medicine and Science, The University of Glasgow, Glasgow G12 8QQ, UK

STEPHEN LEADBEATTER
Institute of Forensic Medicine, The Royal Infirmary, Cardiff CF2 1SZ, UK

Correction

Photodynamic treatment of pooled coumarin plasma for external quality assessment of the prothrombin time.

Because of an error in the publishing process, the wrong figure was published as fig 6 in this paper. The following figure is the correct one.

The journal apologises for this error.
Next of kin clinics

John Drayton, Peter S J Ellis and Tony Purcell

J Clin Pathol 2000 53: 646
doi: 10.1136/jcp.53.8.646

Updated information and services can be found at:
http://jcp.bmj.com/content/53/8/646.1

These include:

References
This article cites 1 articles, 0 of which you can access for free at:
http://jcp.bmj.com/content/53/8/646.1#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/