Improved cultural detection of *Burkholderia cepacia* from sputum in patients with cystic fibrosis

R M Wright, J E Moore, A Shaw, K Dunbar, M Dodd, K Webb, A O B Redmond, M Crowe, P G Murphy, S Peacock, J S Elborn

Abstract

Aims—To evaluate the sensitivity and specificity of two selective media for the isolation of *Burkholderia cepacia* from sputum specimens in patients with cystic fibrosis (CF).

Methods—In total, 149 expectorated sputum specimens from 113 patients with CF (32 cepacia colonised patients and 81 non-cepacia colonised patients) attending three CF centres were examined for the presence of *B cepacia* on two selective media: (1) MAST selective agar, a commercially available selective medium widely used in the UK and (2) BCSA (*B cepacia* selective agar), a new medium recently described, which is used predominately in North America.

Results—*Burkholderia cepacia* was isolated from 53 of 149 (35.6%) specimens examined, representing 32 of 113 (28.3%) patients, using both the MAST and BCSA media. Growth was most rapid on BCSA with all (53 of 53) isolates detectable after 48 hours, compared with 50 of the 53 isolates on MAST agar, with the remaining three isolates detectable at five days. Twenty eight contaminants were identified on MAST agar and 13 on BCSA agar; mainly *Alcaligenes xylosoxidans* and yeast on MAST agar and *Flavobacterium indologenes* on BCSA medium. BCSA was equivalent to MAST agar in its ability to isolate *B cepacia* from patients with CF with a history of *B cepacia* infection.

Conclusions—The increased selectivity and reduced time to detection of BCSA makes it an attractive alternative to MAST. However, its present limited commercial availability in the UK may delay its use in routine diagnostic laboratories because of complications with media preparation and quality control.

Keywords: *Burkholderia cepacia*; *Burkholderia cepacia* selective agar; MAST agar; cystic fibrosis

Burkholderia cepacia, a Gram negative bacillus, is a saprophyte in soil and river sediments causing "slippery skin" or "sour skin" rot in plants, such as onion and garlic. Originally named *Pseudomonas cepacia*, it was renamed *Burkholderia cepacia* in 1992 when taxonomists showed that it was sufficiently different to the pseudomonas species, based on DNA–DNA hybridisation studies and 16S rRNA sequence alignments. Over the past two decades its role as an important human pathogen has emerged. It has been shown to have particularly serious consequences for patients with cystic fibrosis (CF), sometimes resulting in accelerated pulmonary deterioration, with fatal necrotising pneumonia and bacteraemia.

Because of its high transmissibility, multiple antibiotic resistance, and association with a poor prognosis, it is important to use reliable detection methods for this organism. Although molecular techniques are a reliable and accurate method of detection, many CF centres do not have access to such facilities on site for primary diagnostic microbiology.

Recently, Henry et al described a new selective medium for the conventional isolation of *B cepacia*, with superior characteristics over several other selective media available for this organism, which is used predominantly in North America but not in the UK. Presently, the MAST selective agar is the most commonly used selective medium in the UK. However, the study of Henry et al did not compare the new medium with the MAST medium and hence we designed our study to compare both the sensitivity and specificity of each medium for the detection of *B cepacia* from the sputum of patients with CF in the UK.

Materials and methods

PATIENT POPULATION

Fresh sputum specimens (volume range, 1–10 ml; n = 149) were collected after physiotherapy from adults with CF (table 1). Specimens were collected in sterile sputum containers and were transported to the laboratory at ambient temperature. Specimens received from the Belfast City Hospital were processed within 24 hours and those from Manchester and Royal Belfast Hospital for Sick Children sites within 48 hours of collection. All sputum was stored at ambient temperature before processing.

SPUTUM PROCESSING

Sputum specimens from patients were mixed with Sputasol (Oxoid, Basingstoke, Hampshire, UK) at a 1/1 dilution to reduce the viscosity of the sputum, thereby facilitating the
streaking of plates. Sputum/Sputasol mixtures were incubated at 37°C for 30 minutes, followed by streaking of 10 µl on to one plate each of the BCSA and MAST formulations. BCSA phase II medium was prepared as described previously, and MAST selective plates were prepared in accordance with the manufacturer’s instructions (MAST Diagnostics, Bootle, Merseyside, UK). Plates were incubated aerobically for 48 hours at 37°C in air and growth was assessed. Plates were subsequently stored at room temperature for a further five days before re-examination for growth.

Results and discussion

Growth of *B cepacia* was detected on both MAST and BCSA media in 53 of 149 (35.6%) sputum specimens examined, from 32 of the 113 (28.3%) patients. The growth after 48 hours and five days was recorded for both groups of patients with CF grew on BCSA, 100% on OFPBL, and 179 (94.2%) on *P cepacia* agar. It also showed that growth was most rapid on BCSA, with 201 of 205 (98%) isolates being detected within 24 hours, compared with 182 (88.8%) on OFPBL and 162 (79%) on *P cepacia* agar. Of the 189 other Gram positive and Gram negative organisms tested, 10 (5.3%) grew on BCSA, compared with 19.6% and 13.8% for the OFPBL and *P cepacia* selective agars, respectively. The addition of vancomycin to the BCSA medium, to produce the phase II medium, lowered the false positivity rate to 3.7% through inhibition of enterococcal growth. Phase II BCSA had no effect on the growth of Gram negative organisms, and we therefore used this BCSA medium in our study because of its greater selectivity. However, the original study and a subsequent study did not compare BCSA with the commercial MAST selective medium widely used in the UK.

Another analysis of selective media available for *B cepacia* detection concluded that MAST was the best and most user friendly medium available. MAST selective agar is the most widely used medium in the UK for routine detection of *B cepacia* colonisation in patients with CF. In this assessment, MAST agar was compared with *P cepacia* agar and OFPBL. In total, 54 of 54 *B cepacia* strains, as confirmed by phenotypic and genotypic testing, were isolated on *P cepacia* and MAST media, but only 50 strains were recovered on OFPBL. However, *P cepacia* medium was complex to prepare and was shown to be less selective than MAST, so that MAST was concluded to be the preferred medium. However, this study did not compare MAST agar with the new BCSA medium. In another study, Hutchinson et al. showed that at least 16 species of colistin resistant, Gram negative bacterial species could be recovered from the MAST medium. In our present study, patients with CF (who were both colonised and non-colonized with *B cepacia*) from three UK centres were examined for the presence of viable *B cepacia* organisms, by culture, using both MAST and BCSA selective media. Overall, BCSA was comparable to MAST because it detected all cepacia-positive patients. However, BCSA medium detected all patients in a faster time than MAST; using MAST an additional four day’s incubation was required to produce a positive result in three specimens. In addition, BCSA medium was more selective because it produced fewer contaminants than MAST medium (table 2). The non-cepacia organisms that grew on BCSA displayed growth characteristics similar to those described previously by Henry et al. The most commonly isolated non-cepacia organism from BCSA was *Flavobacterium indologenes*. This organism can be relatively easily distinguished from *B cepacia* through the use of a few simple biochemical tests, including: (1) indole production from tryptophan (with 85% *F indologenes* and 0% of *B cepacia* giving a positive result); (2) urease activity (44% *F indologenes* positive compared with 2% *B cepacia*); and (3) β-glucosidase

<table>
<thead>
<tr>
<th>Table 2 Contaminants isolated on MAST and BCSA media</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contaminating organisms</td>
</tr>
<tr>
<td>Pseudomonas spp</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
</tr>
<tr>
<td>Stenotrophomonas maltophilia</td>
</tr>
<tr>
<td>Alcaligenes xylosoxidans</td>
</tr>
<tr>
<td>Flavobacterium indologenes</td>
</tr>
<tr>
<td>Aeromonas sp</td>
</tr>
<tr>
<td>Staphylococcus sp</td>
</tr>
<tr>
<td>Yeast</td>
</tr>
<tr>
<td>Aspergillus fumigatus</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

BCSA, Burkholderia cepacia selective agar.
hydrolysis of esculin (98% \textit{F} \textit{indolgenes} and
50\% \textit{B} \textit{cepacia} positive). Furthermore, the use of
specific PCR assays, including those de-
scribed by Campbell \textit{et al.}5 may aid in the iden-
tification of suspect isolates because pheno-
typic characterisation tests have previously
been shown to misidentify other closely related
phylogenetic neighbours, such as \textit{B} \textit{pyrocinna},
as \textit{B} \textit{cepacia}.10

Overall, accurate cultural detection of the
\textit{B} \textit{cepacia} complex organisms is important for
patients with CF, both in terms of their manage-
ment, and for infection control purposes. The
problems of reliable detection in CF microbiol-
ogy are further exacerbated by the quality and
quantity of the sputum specimen obtained, the
representativeness of the specimen, and whether
primary diagnostic laboratories perform selec-
tive isolation methods for \textit{B} \textit{cepacia}. The use of
sputum specimens of compromised quality or
use of inadequate or inappropriate selective
methods may eventually translate into the trans-
mision of this organism to patients with CF
who are not colonised with \textit{B} \textit{cepacia} complex
organisms.

In conclusion, our study showed that BCSA
was equivalent to MAST selective agar in its
ability to isolate \textit{B} \textit{cepacia} from patients with
CF and a history of \textit{B} \textit{cepacia} infection. The
increased selectivity and reduced time to
detection of BCSA makes its an attractive
alternative to MAST. However, its present lim-
ited commercial availability in the UK may
delay its use in routine diagnostic laboratories
because of complications with media prepara-
tion and quality control.

RW was supported by a Zeneca Pharmaceuticals' student elec-
tive bursary from the Royal College of Pathologists, London.
The authors wish to thank A Murphy for technical assistance
relating to media production, the physiotherapists for their help
in the collection of sputum specimens, and D Henry, University
of British Columbia, Vancouver, Canada, for help and advice
with the study.

1 Wiwut-Daengsubha W, Quimio AJ. Vegetable soft rot bacte-
ria in the Philippines. In: \textit{Proceedings of the 2nd Southeast
University:109.

2 Yabuuchi E, Kosako Y, Oyaizu H. Proposal of \textit{Burkholderia}
den. nov. and transfer of seven species of the genus
\textit{Pseudomonas} homology group II to the new genus with
type species \textit{Burkholderia cepacia} (Palleroni \& Holmes

3 Govan JR, Hughes JE, Vandamme P. \textit{Burkholderia cepacia}:
medical, taxonomic and ecological issues. \textit{J Med Microbiol}

4 Henry DA, Campbell ME, LiPuma JJ, \textit{et al.} Identification of
\textit{Burkholderia cepacia} isolates from patients with cystic
fibrosis and use of a simple new selective medium. \textit{J Clin

5 Campbell PW, Phillips JA, Heidecker GJ, \textit{et al.} Detection of
\textit{Pseudomonas} (\textit{Burkholderia}) cepacia using PCR. \textit{Pediatr

6 De Vos D, Lim A, Pinay JP, \textit{et al.} Direct detection and
identification of \textit{Pseudomonas} aeruginosa in clinical
samples such as skin biopsy specimens and expectorations
by multiplex PCR based on two outer membrane lipopro-

7 Henry D, Campbell M, McGimpsey C, \textit{et al.} Comparison of
isolation media for recovery of \textit{Burkholderia cepacia} com-
plex from respiratory secretions of patients with cystic

8 Revets H, Vandamme P, Van Zeebroeck A, \textit{et al.} \textit{Burkholde-
ria} (\textit{Pseudomonas}) cepacia and cystic fibrosis: the epidemi-

9 Hutchinson GR, Parker S, Pryor JA, \textit{et al.} Home-use
nebulizers: a potential primary source of \textit{Burkholderia}
cepacia and other colistin-resistant, Gram-negative bacte-
rria in patients with cystic fibrosis. \textit{J Clin Microbiol} 1996;34:
584–7.

10 Segonds C, Heulin T, Marty N, \textit{et al.} Differentiation of \textit{Bur-
kholderia} species by PCR-restriction fragment length poly-
morphism analysis of the 16S rRNA gene and application
Improved cultural detection of *Burkholderia cepacia* from sputum in patients with cystic fibrosis

R M Wright, J E Moore, A Shaw, K Dunbar, M Dodd, K Webb, A O B Redmond, M Crowe, P G Murphy, S Peacock and J S Elborn

doi:

Updated information and services can be found at:
http://jcp.bmj.com/content/54/10/803

These include:

References

This article cites 9 articles, 5 of which you can access for free at:
http://jcp.bmj.com/content/54/10/803#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

Pancreas and biliary tract (157)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/