New insights into the role of cytokines in asthma

J-C Renauld

Abstract
Asthma is a triad of intermittent airway obstruction, bronchial smooth muscle cell hyperreactivity to bronchoconstrictors, and chronic bronchial inflammation. From an aetiological standpoint, asthma is a heterogenous disease, but often appears as a form of immediate hypersensitivity. Many patients with asthma have other manifestations of atopy, such as rhinitis or eczema. Even among non-atopic patients with asthma, the pathophysiology of airway constriction is similar, raising the hypothesis that alternative mechanisms of mast cell degranulation may underlie the disease. The primary inflammatory lesion of asthma consists of accumulation of CD4+ T helper type 2 (TH2) lymphocytes and eosinophils in the airway mucosa. TH2 cells orchestrate the asthmatic inflammation through the secretion of a series of cytokines, particularly interleukin 4 (IL-4), IL-13, IL-5, and IL-9. IL-4 is the major factor regulating IgE production by B cells, and is required for optimal TH2 differentiation. However, blocking IL-4 is not sufficient to inhibit the development of asthma in experimental models. In contrast, inhibition of IL-13, another TH2 cytokine whose signal transduction pathway overlaps with that of IL-4, completely blocks airway hyperreactivity in mouse asthma models. IL-5 is a key factor for eosinophilia and could therefore be responsible for some of the tissue damage seen in chronic asthma. IL-9 has pleiotropic activities on allergic mediators such as mast cells, eosinophils, B cells and epithelial cells, and might be a good target for therapeutic interventions. Finally, chemokines, which can be produced by many cell types from inflamed lungs, play a major role in recruiting the mediators of asthmatic inflammation. Genetic studies have demonstrated that multiple genes are involved in asthma. Several genome wide screens point to chromosome 5q31–33 as a major susceptibility locus for asthma and high IgE values. This region includes a cluster of cytokine genes, and genes encoding IL-3, IL-4, IL-5, IL-9, IL-13, granulocyte macrophage colony stimulating factor, and the β chain of IL-12. Interestingly, for some of these cytokines, a linkage was also established between asthma and their receptor. Another susceptibility locus has been mapped on chromosome 12 in a region that contains other potential candidate cytokine genes, including the gene encoding interferon γ, the prototypical TH1 cytokine with inhibitory activities for TH2 lymphocytes. Taken together, both experimental and genetic studies point to TH2 cytokines, such as IL-4, IL-13, IL-5, and IL-9, as important targets for therapeutic applications in patients with asthma.

Keywords: asthma; cytokines; interleukins; treatment of asthma; interferon γ

Asthma is one of the most common disorders encountered in clinical medicine in both children and adults. It affects approximately 5% of the adult population in the Western world and its reported incidence is increasing dramatically in many developed nations. The cost of the disease is substantial, and the market for the pharmaceutical industry is estimated at $5.5 billion/year. ¹ ² Rather than being a single disease, asthma is currently considered to be a group of different disorders characterised by three major features: (1) intermittent and reversible airway obstruction leading to recurrent episodes of wheezing, breathlessness, chest tightness, and cough; (2) bronchohyperresponsiveness (BHR), which is defined as an increased sensitivity to bronchoconstrictors such as histamine or cholinergic agonists; and (3) airway inflammation.

This syndrome arises as a result of interactions between multiple genetic and environmental factors.¹ Most patients also exhibit acute immediate hypersensitivity responses to common inhaled proteins, known as allergens, of which very small amounts trigger IgE dependent mast cell degranulation, leading to reversible airway obstruction. Typical allergen sources include grass pollens and animal danders, but the most important to those with asthma is house dust mite.² ³ However, a large proportion of patients with asthma present with no personal or family history of allergy, with negative skin tests, and with normal serum concentrations of IgE, and therefore have disease that cannot be classified on the basis of defined immunological mechanisms. In these non-atopic patients, the pathophysiology of
Airway constriction has some similarities, including eosinophil and T helper type 2 (TH2) lymphocyte infiltration, the presence of FcεRI+ cells, and cells expressing IgE mRNA. In a series of biopsies from atopic or non-atopic patients with asthma, the main difference was a stronger macrophage infiltration in non-atopic asthma, although there were more similarities than differences between these subgroups of patients. Both forms of the disease could be IgE mediated, although in non-atopic patients the putative antigen is unknown, and IgE production appears to be local rather than generalised as in atopy. Alternative mechanisms of mast cell degranulation (for example, by locally produced neurotransmitters) may also underlie this disease. However, the origin of non-atopic asthma remains highly controversial, and mast cell independent mechanisms could play a major role in a subgroup of patients.

Work over the past 10 years led to the recognition that chronic inflammation underlies the clinical syndrome of asthma. At necropsy, asthmatic lungs typically show hyperinflation, mucus plugging in the airways, clusters of sloughed epithelial cells, and crystalline precipitates of eosinophil derived proteins. Bronchial mucosa are oedematous, the number of goblet cells is increased, the basement membrane is thickened, and the smooth muscle is hypertrophied. T cells, mast cells, eosinophils, and macrophages infiltrate the subepithelium, and the bronchi contain an inflammatory exudate in the bronchus itself.

Although peribronchial inflammation and exaggerated bronchospastic responses are the pathological and physiological cornerstones of the asthmatic syndrome, the mechanisms underlying the initiation and maintenance of these processes remain poorly understood. It is most likely that different immunological processes mediate different aspects of asthma, and that various types of inflammatory responses contribute differentially to the multiple features manifested by patients with asthma. As a result, it has been difficult to design specific inflammation based therapeutic interventions for this disease.

Nevertheless, there is overwhelming evidence that CD4+ T helper cells are responsible for the orchestration of this complex immune reaction. In patients with asthma, CD4+ T cells producing interleukin 4 (IL-4), IL-5, IL-9, and IL-13 (so called TH2 cytokines) have been identified in bronchoalveolar lavages (BAL) and airways biopsies. Because TH2 cytokines are required for the development of airway eosinophilia and IgE in mouse models, it has been proposed that TH2 cells stimulate an inflammatory response that results in asthma. In this review, we will focus on the evidence supporting the role of cytokines in general and the TH2 pathway in particular for asthma. Basically, two different approaches have contributed to highlight the involvement of cytokines. Experimental animal models have enabled the expression and function of individual cytokines to be assessed in vivo and have also allowed the efficacy of cytokine antagonism in asthma-like situations to be studied. In addition, human genetic studies have mainly helped shed some light on a series of candidate target genes encoding cytokines.

Pathophysiology of asthma

IgE AND MAST CELLS IN THE ACUTE PHASE OF ASTHMA

Similar to allergic rhinitis and atopic dermatitis, asthma is often accompanied by increased concentrations of circulating IgE. Genetic analyses of families have shown that BHR and IgE values are linked. Mast cells are thought to be the main link between IgE and BHR. Crosslinking of IgE bound to mast cells by FcεRI triggers the release of preformed vaso-active mediators such as histamine, the synthesis of prostaglandins and leukotrienes, and the transcription of cytokines. In the bronchial mucosa, these mediators of immediate hypersensitivity reactions rapidly induce mucosal oedema, mucus production, and smooth muscle constriction, and eventually elicit an inflammatory infiltrate.

Quite surprisingly, it has been difficult to demonstrate a precise role for IgE in the pathogenesis of asthma using murine models of the disease. Inflammation of the bronchial mucosa and induction of BHR are elicited to the same extent in wild-type and IgE−/− mice subjected to repeated inhalations of allergen extracts of Aspergillus fumigatus. Even the syndrome of active anaphylaxis, with mast cell activation and mediator release, can be displayed by both ovalbumin (OVA) sensitised IgE−/− and FcεRI-deficient mice after intravenous challenge with OVA. Although these findings point to the existence of parallel pathways of allergic reactions, they do not exclude an important role for IgE in allergic diseases in humans. The strong expression of hypersensitivity reactions in the absence of IgE might be species specific; in mice, the IgG1 isotype effectively sensitises mast cells and can passively confer hypersensitivity. Furthermore, in asthma, most animal analyses focused primarily on aspects of the disease that may be essentially cell driven, including eosinophil recruitment and BHR. It is possible that IgE plays a greater role in acute responses to inhaled allergen induced bronchospasm and late phase responses of the airways.

Mast cells express approximately 300 000 high affinity IgE receptors/cell, but aggregation of only 100 receptors is required for detectable responses. Histamine, the best studied of mast cell products, accounts for 5–10% of mast cell granule content, and is stored in association with proteoglycans. Histamine receptor stimulation results in smooth muscle contraction, increased vascular permeability, and prostaglandin generation. Chemotactic factors and neutral proteases (mainly tryptase) are the main other preformed mediators found in mast cell granules. Arachidonic acid metabolites, including prostaglandins (PGD2) and leukotrienes (LTc4), are another important group of mast cell derived mediators that are not stored...
but produced de novo after mast cell degranulation. PGD_2 and LTC, are potent bronchoconstrictors for human airways in vitro. Mast cell derived mediators have been found in lavage fluid from patients with asthma, supporting the role of these cells in the immediate or early allergic reaction in asthma. When allergen challenge preceded BAL, increases were documented for histamine, LTD_4, PGD_2, and tryptase. The role of mast cells in the late allergic response has been more difficult to resolve. However, they are thought to play a key role in the development of the chronic inflammatory phase through their production of cytokines and chemotactic factors that lead to the recruitment of other cell types such as eosinophils.

EOSINPHILS AS EFFECTORS OF THE LATE PHASE

Even if the role of the eosinophil remains somewhat enigmatic, the current view is that it is a proinflammatory cell with a substantial tissue destructive potency. The biological activities exerted by the eosinophil are related to the products released from its granules, including the eosinophil cationic protein (ECP) and the major basic protein (MBP). These two potent cytotoxic proteins have the capacity to kill both mammalian and non-mammalian cells, such as parasites, by making pores in cell membranes, which leads to osmotic lysis. The accumulation and activation of eosinophils in the lungs are governed by the upregulation of adhesion molecules on lung endothelial cells and the production of various cytokines and chemotactic molecules by mast cells and T cells. Of these cytokines, IL-5 seems to play a central role, because it regulates most aspects of eosinophil behaviour, such as growth, apoptosis, adhesion, and secretion. Activation of the endothelium by cytokines such as IL-4 favours their migration to the lungs by upregulating the expression of vascular cell adhesion molecule 1 on endothelial cells. Finally, chemokines are responsible for tissue recruitment (see below).

EPITHELIAL CELLS AS GATEKEEPERS

Traditionally, the main function of airway epithelial cells was thought to be preventing the entry of noxious inhaled substances into the body and clearing particulates out of the airways. However, recent studies have demonstrated that these cells can synthesise and release several mediators that modulate the inflammatory effectors involved in bronchial asthma. Although the tracheobronchial epithelium comprises a variety of cell types, ciliated cells and goblet cells are the major components. Ciliated cells are the predominant cell type and are responsible for propelling the tracheobronchial secretions toward the pharynx. Airway epithelial cells can generate a wide variety of cytokines such as colony stimulating factors that promote the differentiation of inflammatory cells, or multifunctional factors that initiate and amplify inflammatory events. In addition, these cells contribute to the inflammatory response by the production of chemokines such as monocyte chemotactic protein 1 (MCP-1), RANTES, and others that recruit T cells and eosinophils.

Goblet cells, unlike ciliated epithelial cells, have electron dense granules containing mucin, the main component of mucus, which is responsible for effective ciliary beating and mucociliary clearance. Mucus hypersecretion contributes to the chronic symptoms associated with asthma, mainly wheeze, cough, and sputum production. Mucins consist of a peptide backbone, to which multiple oligosaccharide side chains are bound, with carbohydrates accounting for 70–80% of the total mass of the mucin molecule. The complete mucin glycoprotein, which is highly sulphated, accumulates in secretory granules awaiting appropriate stimuli to be released.

At postmortem examination of the lungs of patients who died in status asthmaticus, bronchi and bronchioles are blocked or partially occluded with gelatinous plugs, consisting of mucus, plasma proteins, DNA, cells, and proteoglycans. Mucus hypersecretion in asthma is also illustrated by the sputum production that occurs during acute attacks or during recovery from an attack. Various mediators of airway mucus secretion are produced during the acute phase of asthma. The most potent inducers are inflammatory cell proteases, most notably mast cell chymase, neutrophil elastase, and cathepsin G. Cytokines such as IL-1, IL-6, and tumour necrosis factor (TNF) might also be involved in this process.

AIRWAY SMOOTH MUSCLE CELLS AND AIRWAY REMODELLING

It is well recognised that contraction of the airway smooth muscle is the principal component underlying the bronchoconstriction that characterises the acute phase of an asthmatic attack. It is also well established that structural alterations are generated as a consequence of chronic inflammation and contribute to the symptoms and physiological dysregulation seen in asthma. Basically, all components of the airway wall have been reported to be thickened in asthma. Many elements contribute to this response, including an increase in airway smooth muscle, oedema, inflammatory cell infiltration, glandular hypertrophy, and connective tissue deposition. In particular, subepithelial fibrosis may be a major determinant of the pathway that leads to BHR. Cytokines of the transforming growth factor β (TGF-β) family are thought to be involved in this process because they are produced in large quantities by eosinophils, fibroblasts, and epithelial cells, and are detected at increased concentrations in asthmatic BAL fluid before and after antigen challenge. Moreover, TGF-β expression correlates with basement membrane thickness and disease severity. In transgenic animal models, overexpression of IL-6 or IL-11 also results in subepithelial fibrosis. The mechanisms involved in the fibrotic process are not fully understood but might include a balance of matrix metalloproteinases (MMPs) and their inhibitors, the tissue inhibitors of metalloproteinases (TIMPs). In particular,
patients with allergic asthma, TH2 lymphocytes are increased in the airways.20–22 Because TH2 cells have been identified in the airways of patients with asthma, and because TH2 cytokines are required for the development of airway eosinophilia and IgE production, it has been proposed that TH2 cells trigger an inflammatory response that results in asthma.

The ability of TH2 cells to induce the characteristic features of asthma was recently shown in animal models by transferring TH2 cells into naive animals before antigen challenge. In this model, TH2 cells caused airway eosinophilia, mucus hypersecretion, and BHR.23, 24 In addition, transgenic mice that overexpress TH2 cytokines in the airway epithelium exhibit typical inflammatory features of asthma, indicating that the activation of TH2 cells is sufficient for the induction of inflammation and the chronic pathological changes associated with asthma. Figure 1 is a representation of the TH2 orchestrated inflammatory network. In the next section, the activity of individual cytokines will be described in more detail, together with the potential therapeutic applications.

Cytokines as therapeutic targets: lessons from mouse models

Corticosteroids are the most effective treatment currently available for atopic diseases. New generation inhaled corticosteroids for asthma have a high level of anti-inflammatory action, with minimal side effects. The principal action of corticosteroids is to turn off multiple inflammatory genes, including those of cytokines, inflammatory enzymes, adhesion molecules, and inflammatory mediator receptors. Most of these effects can be related to the inhibition of transcription factors, such as AP-1, NF-AT, and NF-kB. Alternative strategies aimed at the specific targeting of individual cytokines are currently under development. This includes cytokine antagonists such as antibodies, soluble receptors, or cytokine mutants, as well as drugs that would specifically interfere with the signal transduction pathways activated by these cytokines.

IL-4 AND IL-13

IL-4 was originally identified as a B cell growth factor, which drives the optimal stimulation of B cells by antigen.25 In addition, IL-4 stimulates the expression by B cells of the major histocompatibility complex (MHC) class II molecules, B7-1 (CD80), B7-2 (CD86), CD40, surface IgM, and the low affinity IgE receptor, resulting in enhanced antigen presenting capacity of B cells.26 IL-4 also induces the immunoglobulin isotype switch from IgM to IgE.27–30 In addition to its direct activity on IgE production, IL-4 promotes the development of TH2 responses by modulating the differentiation of T cells.21 Several lines of in vivo evidence support the importance of IL-4 priming for TH2-like responses. The T cell response of *Leishmania*...
New insights into the role of cytokines in asthma

major infected BALB/c mice was dominated by IL-4 producing clones, unless mice were treated with anti-IL-4 blocking antibodies. In N. brasiliensis infection, IL-13 administration was found to induce airway hyperreactivity, eosinophilia, and increased IgE production in a mouse model. Direct evidence for the role of IL-13 was provided by the observation that blocking its activity by intratracheal administration of soluble IL-13 receptor (IL-13R) reduced BHR and mucus production in a mouse model of asthma. Interestingly, this treatment did not seem to affect IgE production or eosinophilia, although the latter issue is controversial. The roles of IL-4 and IL-13 in eosinophilia have been studied in parasite infection models. In a pulmonary granuloma model, induced with Schistosoma mansoni eggs, it was found that eosinophil infiltration, in addition to IgE, and IL-5 production, were reduced in both IL-4 or IL-13 deficient mice, but were abolished only in the combined absence of both cytokines. However, during N. brasiliensis infection, mice deficient in both IL-4 and IL-13 had raised IL-5 and eosinophilia. These observations suggest that IL-13 is not required for eosinophilia but can indirectly regulate this process, probably as a result of its ability to modulate the TH1/TH2 balance, and particularly IL-5 production, but this might not be its primary role in experimental asthma models. Alternative candidate mechanisms for the effect of IL-13 include direct or indirect alterations in epithelial cells or smooth muscle function because IL-13 receptors have been detected recently on these cell types.

Possible strategies to interfere with the IL-4–IL-13 pathway include the use of inhibitory antibodies or soluble receptor domains. One potential drawback of such inhibitors is the carrier effect, where a cytokine bound to another protein gains a much prolonged lifetime in the serum. For instance, soluble IL-4R can block IgE production by neutralising endogenous IL-4, but it enhances the activity of exogenously administered IL-4, presumably by altering the biodistribution of the cytokine. In addition, soluble IL-4R transgenic mice were capable of mounting normal antigen specific IgE responses, despite the presence in serum of up to 3 µg/ml soluble receptor. An alternative to such cytokine binding inhibitors is to use antagonistic cytokine mutants that retain the ability to bind to the receptor but fail to induce a signal. Such antagonists have been described for IL-4, with the most efficient human IL-4 antagonist described so far being [R121D,Y124D]-IL-4. A similar variant of mouse IL-4 was created by mutating the two structurally homologous amino acid residues, resulting in the variant [Q116D,Y119D]-mIL-4. This murine protein binds to IL-4R with similar kinetics and a potency as the wild-type protein, but has no detectable biological activity because the second receptor subunit cannot be recruited. Most importantly, these antagonist mutants are competitive inhibitors for IL-4, and also for IL-13, because both cytokines need this chain for signal transduction. In vivo, treatment of
mice with this IL-4 mutant prevented the development of OVA specific IgE and IgG1 antibodies, and led to failure to develop immediate cutaneous hypersensitivity or anaphylactic shock upon rechallenge.54

IL-5

The hallmark of IL-5 within the cytokine network is its limited spectrum of activity: it acts on B cells and eosinophils in the mouse, and seems to be restricted to eosinophils in humans.70 However, IL-5 is crucial in regulating the eosinophilic response both in vitro6 and in vivo, as seen during helminth infections.77 Transgenic mice in which IL-5 is constitutively expressed in all T cells show a profound and lifelong eosinophilia, with large numbers of eosinophils in the blood, spleen, and bone marrow.78 The generation of mice with an inactive IL-5 gene has confirmed the key role of IL-5 in the control of eosinophils, both during parasite infections87 and when sensitised mice were challenged with an antigen aerosol.70 In this model, lung eosinophilia was absent and very little inflammation and lung damage was observed, providing an experimental rationale for the role of eosinophils in human asthma. In line with these observations, anti-IL-5 antibodies decreased the eosinophil infiltration induced by OVA inhalation in the trachea of sensitised mice.71 The efficacy of anti-IL-5 antibodies on human eosinophils was also demonstrated in a model of ex vivo culture of nasal polyps from patients with allergic asthma. In this model, addition of anti-IL-5 antibodies significantly accelerated eosinophil apoptosis, thereby decreasing tissue eosinophilia.62 However, whereas blocking IL-5 reduces eosinophil responses to allergen, this strategy falls short of inhibiting BHR, both in mouse experimental models87 and in human preliminary observations.41 Thus, airway eosinophilia is not a requirement for allergen induced airway hyper-responsiveness.85 Although blocking IL-5 might therefore fail to affect the acute phase of asthma, this approach could be an efficient way to interfere with long term airway remodelling, a process where eosinophils are thought to be crucial. Long term clinical studies are now in progress and should clarify the therapeutic benefit of IL-5 antagonism in asthma.

IL-9

IL-9 was originally identified as a growth factor for a subset of murine T cell clones.85 Its physiological role remained rather elusive until recently, when the combination of genetic studies and in vivo experiments shed some light on its potential role in allergic asthma.

IL-9 is a typical TH2 cytokine, both in vitro86 and in vivo.87--89 In humans, analysis of IL-9 expression by peripheral T cells stimulated with anti-CD3 monoclonal antibodies unravelled a cascade of cytokines, with IL-2 being identified as a major mediator of IL-9 expression.67 IL-2 was required for IL-4 production, a combination of IL-2 and IL-4 for IL-10 production, and a combination of IL-4 and IL-10 for IL-9 production.71 These observations pointed to IL-9 as an effector cytokine produced at the late stages of a TH2 response. However, in vivo, antigen induced production of IL-9 precedes IL-4 expression, and is not modified in IL-4 deficient mice,72 indicating that, depending on the conditions, IL-9 could be either an early or a late effector of the T helper cell response. The central role played by IL-2 and IL-10 for IL-9 expression by human T cells was also confirmed in mouse models, because IL-9 production is significantly reduced in IL-2 deficient T cells,73 and in vivo in IL-10 targeted mice.74 In addition, IL-1 and TGF-β were also shown to be potent inducers of IL-9 production by murine peripheral T cells,75 whereas IL-12, IFN-γ, and IFN-α/β inhibit IL-9 expression.76 In human asthma, expression of both IL-9 and its receptor was reported recently, and IL-9 mRNA expression correlated with the airway responsiveness to metacholine.77

Important information on IL-9 biology was provided by the analysis of transgenic mice overexpressing this cytokine, either systemically78 or specifically in the lungs.79 IL-9 transgenic mice show an increase in pulmonary mast cell numbers.80 The activity of IL-9 on mast cells was originally discovered by Hültner and colleagues, who showed that this factor promotes, indirectly or indirectly, the proliferation of bone marrow derived mast cells (BMMC).81 Besides this growth promoting activity, IL-9 might play a key role in mast cell differentiation by regulating the expression of proteases. Stimulation of BMMC by IL-9 indeed induces the expression of transcripts encoding mast cell specific proteases mMCP-1, mMCP-2, mMCP-4, and granzyme B proteases.82 and IL-9 transgenic mice have increased circulating concentrations of mMCP-1.83 Moreover, IL-9 upregulates the mRNA expression of the α chain of the high affinity IgE receptor84 and induces IL-6 secretion by mast cell lines.85

Beside mast cells, accumulation of eosinophils has also been observed in BAL samples and in the peritoneal cavity of IL-9 transgenic mice.86 Although preliminary data indicate that IL-5 is required for the IL-9 induced eosinophilia in vivo (J-C Renaud et al, 2000, unpublished data), further experiments are needed to determine whether IL-9 has a direct or indirect effect on these cells. In addition, it seems that IL-9 can both promote the proliferation of eosinophil progenitors and indirectly induce their migration into the lungs, as suggested by the observation that IL-9 upregulates the expression of eotaxin and other chemokines by lung epithelial cells.87

The effect of IL-9 on immunoglobulin production, IgE in particular, remains poorly understood. Although IL-9 alone fails to stimulate Ig production in murine B cells in vitro, it synergises with suboptimal doses of IL-4 for the production of IgE and IgG1 by lipopolysaccharide (LPS) activated murine B cells.88 The influence of IL-9 on the IL-4 induced IgG1 production correlated with an increase in the number of IgG1 secreting cells. In contrast, IL-9 did not affect the IL-4 induced CD23 expression by LPS activated B
New insights into the role of cytokines in asthma

models, indicating that its activity is not a simple upregulation of the IL-4 responsiveness by B cells. In humans, very similar observations have been reported with peripheral B cells. Moreover, IL-9 also potentiated the IL-4 induced IgE production by sorted CD20+ human B cells upon costimulation by irradiated EL4 murine T cells, thereby suggesting a direct activity on B cells. In another experimental model, anti-IL-9 antibodies were found to inhibit IgE production by human peripheral blood mononuclear cells stimulated by IL-4 and IL-7. In vivo, IL-9 transgenic mice show increased IgE production, but it is not clear whether IL-9 specifically enhances the production of this isotype or whether this reflects a global increase in immunoglobulin values. In this respect, the observation that a special subset of B cells, called B-1 cells, was specifically activated and expanded in response to IL-9 in vivo, raises some intriguing questions about the role of this B cell population in allergies and IgE production.

Mucus production is also stimulated by IL-9. In vitro, Basbaum and colleagues found that lung fluids from sensitised dogs stimulated mucin synthesis by human cultured epithelial cells, and that a large part of this effect was mediated by IL-9. Although the mechanisms involved in this effect are not fully understood, these authors could detect the IL-9 receptor both at the RNA and protein level on one epithelial cell line, suggesting that this cell type represents a new important target for IL-9. In addition, IL-9 stimulates mucin expression in vivo, either after intratracheal instillation or in IL-9 transgenic mice. Finally, IL-9 transgenic mice have greatly increased airway hyperresponsiveness, indicating that IL-9 overexpression induces a bona fide asthmatic phenotype.

The activity of IL-9 antagonism on the development of experimental asthma in the mouse has not been published yet, but preliminary data suggest that anti-IL-9 antibodies inhibit the induction of BHR, airway eosinophilia, and mucus overproduction in A. fumigatus sensitised mice (R Levitt, 2000, personal communication). Recent observations from parasitic infection models provide promising prospects. The immune response against helminth parasites shares many characteristics with allergies and asthma, including high IgE values, mast cells, and eosinophils. Mucosal mastocytosis is typically observed as a result of TH2 cytokine production, including IL-9, during infection of mice by helminth parasites such as *Trichuris muris*. Systemic IL-9 overexpression also results in a massive intestinal mastocytosis and in increased circulating concentrations of mast cell specific proteases. Moreover, resistance of various mouse strains to *T. muris* infection correlated with the production of IL-9 in mesenteric lymph nodes, and IL-9 promotes the in vivo resistance to these parasites. The role of endogenous IL-9 was demonstrated recently by the vaccination of mice against their own IL-9, so that they produce anti-IL-9 blocking autoantibodies. In the *T. muris* infection model, IL-9 vaccinated mice failed to mount an eosinophilic response, indicating that IL-9 is a crucial factor for eosinophilia in vivo. In addition, these mice fail to expel the parasite, demonstrating that IL-9 is required for an efficient antiparasite response. The application of this anti-IL-9 vaccination strategy to experimental asthma should shed some light on the benefits that could be expected from IL-9 antagonists for patients with asthma.

CHEMOKINES

Chemokines are small secreted proteins, whose main (but not only) function is to regulate cell trafficking. They are classified into four subclasses: CC, CXC, C, and CX3C chemokines, based on the location of the first two cysteine residues in their sequence. To date, 23 human CC chemokines, 14 human CXC, and one each of the C and CX3C chemokine subclasses have been described. The biological effects of chemokines are mediated by cell surface receptors, which belong to the superfamily of seven transmembrane G protein coupled receptors. Like the chemokines themselves, the number of novel chemokine receptors has expanded rapidly. Nine CC chemokine receptors, five CXC chemokine receptors, one CX3C chemokine receptor, and one C chemokine receptor have been characterised, and several orphan putative chemokine receptors have been identified also. Interestingly, there is a certain degree of promiscuity in the chemokine superfamily, with many ligands binding different receptors and vice versa.

The identification of eotaxin as the first chemokine with preferential ability to recruit eosinophils has drawn much attention to this molecule. Eotaxin was first discovered in the BAL fluid of guinea pigs after allergen challenge. Unlike other eosinophil chemotactic factors, eotaxin binds to a single receptor, CCR3, which is highly expressed on eosinophils. In addition to its chemotactic activity, eotaxin can induce increased binding of eosinophils under shear force to endothelium via β1 and β2 integrin mediated mechanisms. In human asthma, eotaxin is produced at high concentrations and localises in the airway epithelium. Several other chemokines including RANTES, MCP-3, and MCP-4 can also recruit eosinophils, probably through the CCR3 receptor, although these factors, but not eotaxin, bind other chemokine receptors. However, it is still not clear whether all of these chemokines contribute equally to in vivo eosinophil chemotaxis, or whether a specific chemokine mediates the bulk of the chemotactic activity and can be targeted for treatment.

TH2 cells are probably also recruited to the lungs through various chemokines. Preferential chemokine receptor expression has been reported for TH1 and TH2 cells, the latter expressing greater amounts of CCR3, CCR4, and CCR8. However, other authors did not confirm the increased expression of CCR3 on TH2 cells, and this issue deserves further...
Renauld

antibody isotype switching to IgE in B cells. 110

because I-309, the main CCR8

interstitium but not in the airway lumen.108

significant reduction of eosinophils in the lung
prevent the airway hyperreactivity and in sig-
in a model of lung inflammation resulted in
neutralisation of mMDC, a ligand for CCR4,
di

were di

tioned studies where eosinophilia and BHR
exposure, contrasting with previously men-
etion transiently after each antigen

tion reduced BHR specifically and lung

tially di

leucocyte infiltration and BHR in a substan-

chemokines in lymphocyte activation open

vivo, such observations supporting the role of
chemokines in lymphocyte activation open
some therapeutic options in asthma and

Because of its central role in eosinophil
recruitment, and because of its expression on
TH2 cells, the CCR3 chemokine receptor
might be a good target to interfere with the
development of asthma. Human RANTES was
used as a CCR3 antagonist in a guinea pig
model, taking advantage of the fact that the
human ligand binds to, but does not activate,
its guinea pig receptor. In this model, blocking
CCR3 reduced eotaxin induced skin eosini-
philia.111 Another elegant way to achieve this
goal is illustrated by the use of met-RANTES,
a variant of the RANTES chemokine, where
addition of a single methionine residue at the
N-terminus of the protein resulted in a potent
inhibitor of not only RANTES itself, but also
of other CCR3 ligands. This antagonist can
block [Ca²⁺], transients and actin polymerisa-
tion in eosinophils after in vitro stimulation
with RANTES, MCP-3, and eotaxin.112

in vivo, met-RANTES significantly decreased
lymphocyte and eosinophil infiltration as well
as mRNA expression of eotaxin and RANTES
in a murine asthma model.113 Interestingly, in
this model, blockage of individual chemokines
using specific antibodies reduced both lung
leucocyte infiltration and BHR in a substan-
tially different way. Thus, eotaxin neutralisa-
tion reduced BHR specifically and lung
eosinophilia transiently after each antigen
exposure, contrasting with previously men-
tioned studies where eosinophilia and BHR
were differentially regulated. This discrepancy
might result from additional activities of
cotaxin or from the use of different experimen-
tal designs and/or distinct genetic back-
grounds. MCP-5 neutralisation abolished
BHR not by affecting the accumulation of
inflammatory leucocytes in the airways, but by
altering the trafficking of the eosinophils and
other leucocytes through the lung interstitium.
Finally, MCP-1 neutralisation greatly reduced
BHR and inflammation, and this correlates
with a pronounced decrease in monocyte and
lymphocyte derived inflammatory mediators.113
Taken together, these observations suggest that
chemokines work non-redundantly but in a
coordinated manner, and that different mol-
ecules exacerbate airway hyperreactivity re-
sponses at specific stages of the evolving
response.102

Genetics of asthma: lessons from human
models

The relevance of the animal models described
above is a source of endless controversy, and we
should be extremely careful before making
conclusions from a mouse experimental
asthma model for the human disease. Although
the human situation does not allow for the type
of experimental manipulations undertaken in
mice, much information on the pathogenesis of
asthma could be provided by analysis of genetic
variations that correlate with sensitivity to the
disease.1 114 115 In this respect, although it has
long been known that asthma and related
atopic diseases cluster in families, a major
problem is the heterogeneity and intermittent
nature of this disease and the lack of diagnostic
precision. This has led to the use of intermedi-
ate phenotypes reflecting asthma and atopy,
such as BHR, serum total and allergen specific
IgE, skin prick test positivity, and circulating
eosinophil counts. Although these provide
quantitative measures, BHR—for example, can
be assessed in many different ways, each meas-
ure describing different airway characteristics.
The weakness of this approach is the assump-
tion that the genetic basis of intermediate phe-
notypes will be the same as that of the disease
state. Large epidemiological studies have estab-
lished that the occurrence of asthma corre-
sponds to high serum concentrations of total
IgE.116 However, when analysed on a family
basis, being a high IgE producer is only one
factor related to the inheritance of asthma sus-
ceptibility and, in itself, had a limited predictive
value for asthma inheritance.114

In contrast to single gene mutations, com-
plex genetic traits such as asthma result from
mild mutations in multiple genes, each of
which has a small effect on the phenotype and
requires subtle gene–gene or gene–
environmental interactions for optimal expres-
sion. Two fundamental approaches are being
used to discover susceptibility genes in asthma
and atopy: (1) linkage analysis with functional
cloning and (2) association analysis for muta-
tions of candidate genes thought to be involved
in disease pathogenesis.114 Several genome wide
screening studies have been published. Al-
though there is an emerging consensus for
some chromosomal regions in different popu-
lations, there are many where linkage has not
New insights into the role of cytokines in asthma

been reproduced, probably because of genetic heterogeneity or environmental differences between populations, and because of low numbers of individuals investigated. At least four regions in the human genome—chromosomes 5q31–33, 6p21.3, 11q13, and 12q14.3–24.1—contain genes consistently found to be associated with asthma, but several other regions (2q, 7, 14, 19q13, and 21q21) could also contain candidate genes. As far as cytokines are concerned, chromosomes 5q and 12q are the most important loci. Other loci such as chromosome 11q13 (includes the β-chain of the high affinity IgE receptor), and chromosome 6 (encodes the MHC complex) have been reviewed recently, and will not be discussed here.

CHROMOSOME 5q CYTOKINE CLUSTER
The chromosome 5q31–33 region contains several genes that might be important in the development and progression of inflammation in asthma—genes encoding IL-3, IL-4, IL-5, IL-9, IL-13, granulocyte macrophage colony stimulating factor (GM-CSF), fibroblast growth factor 1 (FGF-1), and the β chain of IL-12, as well as the gene encoding the β-adrenergic receptor. In a milestone study, Marsh et al searched for linkage between total serum IgE and markers at this locus in a population of 170 subjects from 11 Amish families. They found significant evidence for different markers and IgE values. Another study focusing on 538 individuals from 92 Dutch families showed evidence for linkage between IgE and markers at this locus, using a recessive model for inheritance of serum total IgE. Further analysis of this population showed that a two locus model fitted the inheritance of high serum IgE better than a one locus model, suggesting that at least two different genes are required for the expression of this trait, either on chromosome 5 or on another chromosome. In the same population, bronchial hyperresponsiveness was also linked to several markers on chromosome 5. A Japanese study provided further supportive evidence for linkage between asthma and gene markers in or near the IL-4 and IL-9 genes on chromosome 5q31–q33. Finally an association has been found between a polymorphism in the coding sequence, inducing a charge change in the IL-13 protein, and asthma.

The IL-4Rα chain is an essential component of both the IL-4 and the IL-13 signal transduction pathway. Interestingly, a genetic linkage has been found between atopy and flanking markers to IL-4R on chromosome 16p12. At least 12 common polymorphisms have been described in the coding region of the IL-4R gene, five of which lead to amino acid changes. Surprisingly, depending on the studies, one particular variant (Gln576Arg) could be associated with low or high IgE values, possibly because of a linkage disequilibrium with another polymorphism of the same gene. An extracellular variant, Ile50Val has been identified in relation to atopic asthma in Japanese populations. Functional assays in transfected cell lines show that Ile50 upregulates cellular IgE synthesis as well as signal transducer and activator of transcription 6 (STAT6) activation, although this polymorphism did not significantly affect ligand binding affinity. Figure 2 shows a schematic representation of the IL-4–IL-13 signal transduction pathway. Finally, a non-coding variant of IL-13Rα1 has been identified in association with total serum IgE in a UK population, reinforcing the hypothesis that subtle variations in the IL-4–IL-13 signal transduction pathway might affect the susceptibility to allergy.

Although cytokines are the major candidates for asthma susceptibility genes on chromosome 5q31–33, other genes from this region might play an important role. Some studies have found abnormalities in the β-adrenergic receptor in patients with asthma. Several polymorphisms were described for this gene and one particular variant allowed the discrimination of a subset of patients with a distinct profile: they were more likely to be steroid dependent and followed a disadvantageous clinical course. CD14, a gene encoding one component of the LPS receptor, is another good candidate gene
IL-4 receptor (IL-4R) consists of IL-4 and IL-13 receptors. IL-4 can bind to two distinct receptor complexes. On T cells, the IL-4R consists of IL-4Rα, IL-7, IL-9, and IL-15 receptors, and IL-4Rα respectively. Crucial tyrosines of the intracytoplasmic domain of IL-4Rα activate the transcription factor STAT6, which lead to cell proliferation and gene activation, respectively. IL-13Rα2, which might be defective for signal transduction and act as a decoy receptor.

Finally, other cytokine polymorphisms have also been described in chemokine receptor genes. More information on variants of these genes and their association with asthma are needed to define the respective roles of these candidate genes in asthma.

TUMOUR NECROIS FACTOR

TNF is a proinflammatory cytokine that is abundant in asthmatic airways. An association between TNF alleles (located on chromosome 6p21.3) and asthma has been observed. This association seemed independent of serum IgE or other measures of atopy, suggesting that it reflects the influence of inflammation rather than immunoregulation on the disease. However, in mouse models, TNF has been identified as a crucial component of IL-13 mediated TH2-type responses during helminth infections, indicating that this cytokine could exert pleiotropic activities in a complex syndrome such as asthma.

CHEMOKINES

Numerous polymorphisms have been described in chemokine receptor genes. The CCR5 32 mutation is directly related to altered human immunodeficiency virus (HIV) infectivity in human populations in vivo, whereas a CCR2 641 (a G→A substitution) also has an effect on the progression of HIV. These mutations may also have an effect on the incidence of other diseases, such as rheumatoid arthritis and diabetes mellitus. Several polymorphisms have also been described in the CCR3 gene. It is surprising that these or other polymorphisms have not yet been reported to affect the prevalence or severity of asthma, and this issue deserves further investigation. Recently, a single nucleotide polymorphism has been described in the promoter region of the RANTES gene (G→A at position −403), and the mutant allele showed an eight-fold increased transcriptional activity. The −403 A allele was associated with increased susceptibility to atopy, defined as skin test positivity, but not serum IgE concentrations. Homozygosity for this allele conferred a 6.5 fold increased risk of moderate/severe airway obstruction, a marker for established asthma. However, numbers of individuals in some groups of this study were small and this preliminary observation needs to be confirmed in larger cohorts.
Concluding remarks

Both the experimental animal models and the human genetic studies point to a limited set of cytokines and cytokine receptors as crucial targets for the treatment of asthma, particularly IL-4, IL-5, IL-9, IL-13, some chemokines, and their respective receptors. Which cytokine is the best target remains to be determined, but it is tempting to speculate that the heterogeneity of asthma might reflect a heterogeneity of mechanisms and cytokines involved. Environmental differences might also affect the respective contributions of these cytokines in the disease. The experimental and genetic approaches described above have provided a wealth of valuable information but also have important limitations. The adequacy of the animal models regarding human asthma is an endless source of discussion. In addition, simply knowing which genes are associated with asthma will not reveal everything about the development of the disease or necessarily unmask the best therapeutic target. Absence of polymorphism does not infer absence of a crucial role in a particular pathway. Because of these limitations, it seems that only clinical trials will eventually validate the efficacy of antagonising the various cytokines.

However, additional genetic studies will offer a better understanding of full or partial resistance to treatment and progression into a more severe asthma phenotype, thereby allowing for the development of more effective therapeutic treatment. The analysis of pharmacogenetics might be able to take advantage of genetic polymorphisms to predict the response of individuals to particular treatments. In the case of asthma, a mutation in the promoter region of the 5-lipooxygenase gene is associated with a lower response to a leucotriene antagonist.95 96 Supporting the notion that pharmacogenetics may open a way for better patient management. Similarly, a leucotriene C4 synthase polymorphism has been shown to be associated with increased risk of aspirin induced asthma, and might also predict the response to treatment. There is little doubt that polymorphisms in cytokine or cytokine receptor genes will also be associated with distinct responses to asthma treatments.

The author thanks J Van Snick and P Masson for helpful discussions and critical reading of the manuscript.

11 Miyajima I, Dombrowicz D, Martini TR, et al. Systemic anaphylaxis in the mouse can be mediated largely through IgG1 and Fc gammaIII. Assessment of the cardiopulmonary changes, mast cell degranulation, and death associated with active or IgE- or IgG1-dependent passive anaphylaxis. J Clin Invest 1997;99:901–14.
37 Rankin JA, Picarella DE, Gaba GP, et al. Phenotypic and physiologic characterization of transgenic mice expressing

New insights into the role of cytokines in asthma

95 Richard M, Gencris RK, Humphreys NE, et al. Anti-B-9 vaccination prevents worm expulsion and blood leuco-

98 Corrigan CJ. Eotaxin and asthma: some answers, more

100 Rechcock IM, Griffiths-Johnson DA, et al. Eotaxin:

101 cloning of a eosphilin eosinophilicantastactant and increased mRNA expression in allergen-challenged guinea

104 human eosinophil. The importance of CCR3 demonstrated

106 Daugherty BL, Siciliano SJ, DeMartino JA, et al. Cloning,

107 expression, and characterization of the human eosinophil

110 receptor CCR5 participates in stimulation of eosino-

111 phil-mediated actions on inflammatory stromal in bowel. J

113 Lukacs NW, Olivier SP, Hogaboam CM. Chemokines and

114 asthma: redundancy of function or a coordinated

116 Teran LM. CCL chemokines and asthma. Immunol Today

119 Bonecchi R, Bianchi G, Bordignon PP, et al. CC chemokines

120 and asthma: redundancy of function or a coordinated

122 Homey B, Zlotnik A. Chemokine receptor usage by

123 human eosinophil. The importance of CCR3 demonstrated

125 van der Pouw Kraan T, van Veen A, Bociea L, et al. An

126 IL-13 polymorphism associated with increased risk of

128 Deichmann KA, Heinzmann A, Forster J, et al. Linkage and

129 allelic association of atopy and markers flanking the

131 Pan PY, Rothman P. IL-4 receptor mutations. Curr Opin

133 Burchard EG, Silverman EK, Rosenwasser LJ, et al. Association between a sequence variant in the IL-4 gene

134 promoter and FEV1 in asthma. Am J Respir Crit Care Med 1999;160:919-22.

135 Rosenwasser LJ, Boriš L. Genetics of atopy and asthma:

136 the rationale behind promoter-based candidate gene studies

137 (IL-4 and IL-10). Am J Respir Crit Care Med 1997;156:1-6.

138 van der Pouw Kraan T, Van Veen A, Boeije L, et al. An

139 IL-13 polymorphism associated with increased risk of

141 Deichmann KA, Heinzmann A, Forster J, et al. Linkage and

142 allelic association of atopy and markers flanking the

144 Pan PY, Rothman P. IL-4 receptor mutations. Curr Opin

145 Matsuura H, Mizuta Y, Yao QX, et al. Dominant effect of B50Val variant of the human IL-4 receptor

146-alpha-chain in IgE synthesis. J Immunol 1999;162:1277-

147 152-5.

148 Rehbein E, Innis M, MacIntyre N, et al. Mutations in the

149 gene encoding for the beta 2-adrenergic receptor in normal

150 and asthmatic subjects. Am J Respir Cell Mol Biol 1999;20:976-

151 83.

152 Barnes KC, Neely JD, Duffy DL, et al. Linkage of asthma

153 and total serum IgE concentration to markers on chromo-

154 some 12q: evidence from Afro-Caribbean and Caucasian

156 Barnes KC, Marsh DG. The genetics and complexity of

158 The collaborative study on the genetics of asthma: A genome-wide search for asthma susceptibility loci in ethni-

159 Dumoutier L, Van Roost E, Ameye G, et al. IL-Tβ-F1L-22:

160 genomic organization and mapping of the human and mouse

161 Dumoutier L, Louahd J, Renaud JC. Cloning and char-

162 acterization of IL-10-related T cell-derived inducible factor

163 (IL-10F), a novel cytokine structurally related to IL-10 and

165 Moffat MF, Cookson WO. Tumour necrosis factor haplo-

166 types and asthma. Hum Mol Genet 1997;6:531-6.

166 Artsi D, Humphreys NE, Bancroft AJ, et al. Tumor necro-

167 sis factor alpha is a critical component of interleukin

168 13-mediated protective T helper cell type 2 responses dur-

169 Locati M, Murphy PM. Chemokines and chemokine

170 receptors: biology and clinical relevance in inflammation and

172 Garred P, Madsen HO, Petersen J, et al. CC chemokine

173 receptor 5 polymorphism in rheumatoid arthritis. J

175 CC2R and CC5R polymorphisms in children with insulin-

177 Int Arch Allergy Immunol 1999;118:268-70.

178 Shizukawa I, Deschmann KA, Inahata I, et al. Atopy and

179 asthma: genetic variants of IL-4 and IL-13 signalling.

181 Burchard EG, Silverman EK, Rosenwasser LJ, et al. Association between a sequence variant in the IL-4 gene

182 Rosenwasser LJ, Boriš L. Genetics of atopy and asthma:

183 the rationale behind promoter-based candidate gene studies

184 (IL-4 and IL-10). Am J Respir Crit Care Med 1997;156:1-6.
New insights into the role of cytokines in asthma

J-C Renauld

J Clin Pathol 2001 54: 577-589
doi: 10.1136/jcp.54.8.577

Updated information and services can be found at:
http://jcp.bmj.com/content/54/8/577

These include:

References
This article cites 144 articles, 58 of which you can access for free at:
http://jcp.bmj.com/content/54/8/577#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Immunology (including allergy) (1664)
- Inflammation (173)
- Dermatology (222)
- Ear, nose and throat/otolaryngology (39)
- TB and other respiratory infections (74)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/