Rare presentation of intestinal amyloidosis with acute intestinal pseudo-obstruction and perforation

Gastrointestinal manifestations of amyloidosis include dysmotility and pseudo-obstruction. Here, we report an exceptional case of acute small bowel obstruction followed by perforation in a patient with documented light chain amyloidosis (AL).

A 39 year old Chinese woman had a 10 year history of xerophthalmia and visual loss requiring dialysis. Her final presentation was precipitated by the acute onset of abdominal pain and vomiting, diagnosed as small bowel obstruction. Laparatomy disclosed jejunal perforation, for which segmental resection was performed.

Table 1

<table>
<thead>
<tr>
<th>Allergen</th>
<th>Skin prick testing</th>
<th>Specific IgE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wheal (mm)</td>
<td>Flare</td>
</tr>
<tr>
<td>Grass pollen mix</td>
<td>3</td>
<td>++</td>
</tr>
<tr>
<td>Cat dander</td>
<td>4</td>
<td>++</td>
</tr>
<tr>
<td>Dermatophagoides pteronisinus</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>Dermatophagoides farinace</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>Fresh Quorn mixed with saline</td>
<td>7</td>
<td>++</td>
</tr>
<tr>
<td>Alternaria alternata</td>
<td>2</td>
<td>4.1</td>
</tr>
<tr>
<td>Aspergillus fumigatus</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>Cladosporium herbarum</td>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td>Aureobasidium pullulans</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

In the skin prick test histamine produced a 6 mm wheal and a ++ flare, and saline produced a 0 mm wheal and no flare. Results were those seen 1.5 minutes after using ALK standardized lancets and skin prick test reagents. The specific IgE tests were performed by Sheffield Protein Reference Unit. When Quorn was used as the allergen a small piece of fresh quorn burger was mixed with saline, and a single drop of liquid from the mixture was put on the patient’s forearm as with the other skin prick reagents. No specific IgE was detected to two other Fusarium species, and a single drop of liquid from the mixture was put on the patient’s forearm as with the other skin prick reagents. No specific IgE was detected to two other Fusarium species, and a single drop of liquid from the mixture was put on the patient’s forearm as with the other skin prick reagents.
The diversity of fungal allergens is a challenge for successful immunotherapy. A reduction in occupational exposure to fungi may be achieved using helmets with filtered air (which may remove up to 98% of spores), improving ventilation, and controlling humidity. Fungi in dwellings generally have no specialised spore liberation mechanisms and largely depend on disturbance. Spore wall structure determines whether allergens are already available on the surface, and whether the spores can remain airborne.

S J Katona, E R Kaminski
Department of Immunology, Level 7, Derriford Hospital, Plymouth, Devon PL6 6DQ, UK; katona@doctors.org.uk

References

Tumour cells produce receptor activator of NF-κB ligand (RANKL) in skeletal metastases
Osteolytic bone destruction is a common complication of tumours that metastasise to bone. Several solid tumours, most notably breast carcinoma, lung carcinoma, and prostate carcinoma, commonly metastasise to bone in patients with advanced disease, where they cause osteolysis and associated pain, hypercalcemia, and fracture. It is generally accepted that osteoclasts are the only cells capable of resorbing mineralised bone. In osteolytic metastases, it has been shown that tumour cells directly resorb osteoclast bone resorption through a vicious cycle: in particular, tumour cell produced parathyroid hormone related protein (PTHrP) facilitates bone resorption and, as a consequence, transform growth factor β is released from the bone matrix and promotes the progression of bone metastases by further inducing PTHrP production by tumour cells. Other tumour cell products, such as macrophage colony stimulating factor, interleukin 6 (IL-6), IL-11, and tumour necrosis factor α, have also been reported to be associated with tumour induced osteolysis.

However, with the identification and characterisation of a direct stimulator of osteoclastogenesis—the receptor activator of NF-κB ligand (RANKL), also known as OPGL, OPG, and TRANCE)—a possible final common pathway for osteoclastic bone destruction has emerged. A variety of osteotropic factors such as 1,25-dihydroxyvitamin D3, prostaglandin E2, parathryoid hormone, IL-6, and IL-11, have been shown to mediate osteoclast differentiation through the upregulation of RANKL expression or the downregulation of osteoprotegerin (OPG, the decoy receptor of RANKL) expression in osteoblast/stromal cells. There is also experimental evidence that tumour produced soluble PTHrP may stimulate osteoclast bone resorption by enhancing RANKL expression and reducing OPG expression in the osteoblast. However, whether tumour cells directly produce RANKL, which subsequently mediates osteolysis in metastatic skeletal lesions, has not been determined.

To this end, we have investigated the expression of RANKL in the skeletal lesions of patients with carcinomas that had metastasised to bone. Sixteen cases, including breast carcinoma (four cases), lung carcinoma (six cases), prostate carcinoma (two cases), and follicular thyroid carcinoma (four cases), were collected during surgery of pathological fractures. Histological confirmation of the diagnosis in each case was based on the review of routinely prepared paraffin wax embedded tissue sections in conjunction with knowledge of the clinical and radiological findings. All patients presented with aggressive osteolytic lesions and pathological fracture, and adenocarcinoma was the predominant histological subtype (table 1). The expression of RANKL mRNA and protein was assessed using in situ hybridisation (digoxigenin labelled RANKL antisense riboprobe, 0.5 ng/ml) and immunohistochemistry (mouse antihuman TRANCE monoclonal antibody from R&D, Minneapolis, Minnesota, USA; StreptABCComplex/horseradish peroxidase mouse/rabbit system from Dako, Carpinteria, California, USA), respectively, on paraffin wax embedded tissue sections. Typical histological appearances of neoplastic cells in various bone metastatic tumours were revealed by haematoxylin and eosin staining (fig 1, H&E). The neoplastic cells of breast carcinoma, lung carcinoma, prostate carcinoma, and thyroid carcinoma showed strong positive hybridisation signals with RANKL antisense riboprobe, and also strong positive staining with anti-RANKL antibodies (fig 1, H&E). RANKL mRNA and protein were also present in osteoblasts and fibroblasts in surrounding tissues (fig 1). Table 1 summarises the percentages of tumour cells exhibiting immunoreactivity for RANKL and the intensity of immunostaining in all 16 specimens. In short, we found that both RANKL mRNA and protein were present in more than 90% and in some cases 100% of metastatic tumour cells in lesions of breast, lung, prostate, and thyroid adenocarcinoma. Therefore, we conclude that in osteolytic skeletal secondary, metastatic tumour cells, regardless of origin, express RANKL, and may directly stimulate osteoclastic bone destruction.

Bone resorption is a necessary priming event for the establishment and propagation of tumour metastasis in bone. Our study has been conducted on the metastatic component of the primary carcinoma in the skeleton, and we did not have access to tissues of the primary site. Indeed, there is a paucity of studies that compare RANKL expression in the primary and metastatic tumours of the same patients. Brown and colleagues reported that RANKL was heterogeneous in 10 of 11 prostate carcinoma specimens, and the proportion of tumour cells expressing RANKL was significantly increased in all bone metastases in comparison with non-osseous metastases or the primary prostate tumour. Whether RANKL expression in the primary tumour is predictive of a possible propensity towards skeletal metastasis remains to be seen and could be the focus of future studies.

Acknowledgements
This study was fully supported by a grant of the Research Grants Council of the Hong Kong SAR (CUHK4-1420/R1).

L Huang, Y Y Cheng
Department of Orthopaedics and Traumatology, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR

L T C Chow
Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong

M H Zheng
Department of Orthopaedic Surgery, University of Western Australia

S M Kumta
Department of Orthopaedics and Traumatology, Chinese University of Hong Kong
References

Are coroners’ necropsies necessary? A prospective study examining whether a “view and grant” system of death certification could be introduced into England and Wales

The paper by Rutty and colleagues’ fails to focus upon the key issues raised by the question it seeks to answer. Those issues are: (1) What is the “primary purpose” of coroners’ necropsies? (2) Is the “information available at the time of necropsy” adequate? (3) What is meant by postmortem examination? Does it only mean dissection of the whole body? (4) Under what circumstances should a necropsy be performed without regard to the views of the next of kin?
In our view, this last issue is the most important and other issues should be dealt with within that context: none of these issues can be dealt with meaningfully without informed public debate. The authors pay lip service only to this question and reach a conclusion... we consider that necropsies still have an essential role within the coroner's enquiry' that is self evident but superficial.

The paper seems to be based on a false premise—that the ‘view and grant’ facility could replace necropsies. In this study, the causes of death were predicted in 61–74% of cases; in Glasgow, view and grant is performed on approximately 10% of the deaths with which the 'view and grant' facility could replace necropsies. The authors acknowledge that “the most important factor in a pathologist's ability to predict a cause of death before necropsy” is “the quality of the information available to the pathologist”. However, there is no assessment of the quality of information provided in this study, despite a publication by one of the authors' indicating the relatively poor quality of such information. A key question raised is: “Was there, in fact, no clinical information available or was the absence of information a reflection of inadequate enquiry on the part of the pathologist? The paper does not deal with that question but, sadly, ignores it with the following dismissive statement: “Any additional information concerning the deceased, which subsequently became available, was not included, because this could have caused bias in the second part of the assessment”. This appears to us a sad inversion of the importance of the issues.

The inference may be drawn from the paper that where adequate information was provided, allowing a prediction of cause of death, then “the number of correct predictions made of those where a cause of death had been proffered were as follows: A, 70%; B, 63%; C, 59%.” This appears to us to be the “true error rate”, reducing itself to 30–41%, as opposed to the authors’ preferred 54–61%; we would maintain that one should not include in any determination of “error rate” those cases where a prediction could not be made because of inadequate information: under the view and grant system a necropsy would have been carried out in such cases.

In a paper that attaches so much importance to accuracy of cause of death, it is doubly distressing to find a lack of precision in attributing death to “ischaemic heart disease” without further detail of the pathological basis for ischaemia and in finding “bronchopneumonia” an adequate explanation of death.

We think it unfortunate that this paper does not distinguish between the populations of “natural death” and “unnatural death” or give an indication as to whether any of those deaths that were considered to be natural before necropsy were shown to be unnatural—it is this distinction that appears to us to be the primary purpose of a system of investigation of death in which the wishes of the next of kin are irrelevant.

We welcome the opportunity afforded by the authors to add to the debate regarding the role and future of the coroner system. The authors’ implicit support for more detailed investigation of the circumstances of death before postmortem examination sits well with the “radical option”—foreshadowing a “medical examiner” system—detailed in the Home Office consultation document produced in the first phase of its Review of Death Certification, with recommendation 11—‘the feasibility of establishing a new system of death certification involving a medical examiner should be explored’—in recent advice from the chief medical officer.'

S Leadbeatter, D James, A Davison
Wales Institute of Forensic Medicine, B1 Link Corridor, University Hospital of Wales, Heath Park, Cardiff CF14 4XN, UK; leadbeatt@cf.ac.uk

References

Androgen receptor expression in ductal carcinoma in situ of the breast: relation to oestrogen and progesterone receptors

We wish to add a reference to the list included in the paper of Kasami and colleagues concerning androgen receptors in ductal carcinoma in situ (DCIS) of the breast that appeared in the Journal of Clinical Pathology in the first issue of 2002. Although the authors state that androgen receptors in DCIS have not been reported previously, we had studied this and published a paper dealing with our observations, in addition to CAG repeat lengths in the androgen receptor in DCIS.

M Kasami
Shizuoka Cancer Center Hospital, Nagaiizumi, 411–8777, Japan

D L Page
Department of Pathology, RM C3309, MCN, Vanderbilt University Medical Center, 1111 21st Av. So., Nashville, TN 37232–2561, USA; david.page@mcmail.vanderbilt.edu

References

Authors’ reply
Thank you for this information and the opportunity to reply. Unfortunately, the study of androgen receptor (AR) CAG repeats by Kasami and colleagues is not included in the usual searches and this appears to be the reason for overlooking this reference. In this study, cases of fibroadenoma, ductal carcinoma in situ (DCIS), and invasive mammary carcinoma were included. Twenty-four cases of DCIS were tested for AR CAG repeats and 10 were tested for AR expression immunohistochemically. Two of 10 cases were positive for AR and these two cases were the only cases with apocrine morphology. However, in our study, we found that 19 of 57 cases of DCIS expressed AR. Thirteen of those 19 cases were of non-apocrine morphology. In addition, of the nine morphologically apocrine cases, three lacked AR expression. It seems to be that AR is expressed in a subset of DCIS even without an apocrine morphology, but it is necessarily true that all morphologically apocrine cases of DCIS will express AR. In Kasami and colleagues’ study, none of the cases of invasive mammary carcinoma was tested for AR expression, but other studies1 have found that a subset of invasive breast carcinomas expresses AR. We feel that a study of AR CAG repeats in benign apocrine metaplasia, which is always immunohistochemically positive for AR, together with and without cases of apocrine and/or non-apocrine in situ and invasive breast carcinoma, would be very valuable in highlighting the importance of CAG repeats and apocrine differentiation.

A A Selim, G El-Ayat, C A Wells
Department of Histopathology, St Bartholomew’s Hospital, St Bartholomew’s and the Royal School of Medicine and Dentistry, Queen Mary and Westfield College, University of London, West Smithfield, London EC1A 7BE, UK; aaselim@doctors.net.uk

References
Tumour cells produce receptor activator of NF-κB ligand (RANKL) in skeletal metastases

L Huang, Y Y Cheng, L T C Chow, M H Zheng and S M Kumta

doi: 10.1136/jcp.55.11.877

Updated information and services can be found at:
http://jcp.bmj.com/content/55/11/877

These include:

References
This article cites 9 articles, 2 of which you can access for free at:
http://jcp.bmj.com/content/55/11/877#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/