Thromboxane synthase immunohistochemistry in inflammatory bowel disease

E Carty, C Nickols, R M Feakins, D S Rampton

Background: Thromboxanes are produced in excess in inflammatory bowel disease. Preliminary reports suggest that ridogrel, a thromboxane synthase inhibitor, is anti-inflammatory and may have therapeutic benefits in patients with ulcerative colitis.

Aims: To investigate the immunohistochemical expression of thromboxane synthase in the colorectal mucosa of patients with inflammatory bowel disease.

Methods: Immunostaining of colonic biopsies from patients with inflammatory bowel disease (n = 13) and controls (n = 5) was performed using a monoclonal antibody to human thromboxane synthase. The extent of staining in cells of the lamina propria was compared in patient and control groups, and was assessed in relation to disease activity scored macroscopically and histologically.

Results: The percentage of cells in the lamina propria staining for thromboxane synthase was higher in patients with active inflammatory bowel disease than in those with inactive disease or in controls (p = 0.02 and p = 0.002, respectively). There was a direct correlation between disease activity, measured endoscopically and histologically, and the percentage of lamina propria cells staining for thromboxane synthase (R = 0.71, p = 0.001 and R = 0.72, p = 0.001, respectively).

Conclusions: Increased thromboxane synthase expression in lamina propria cells occurs in active inflammatory bowel disease. It is possible that this results in increased thromboxane synthesis, which may in turn contribute to mucosal inflammation and intramucosal thrombogenesis.

Materials and Methods

Patients

Paired colorectal mucosal biopsies from 13 patients with IBD (nine with UC, four with CD) were collected at routine colonoscopy. IBD had been confirmed previously by conventional histological, endoscopic, and radiological criteria.

Five patients undergoing colonoscopy, and found to have endoscopically and histologically normal mucosa, served as controls; their diagnoses were haemorrhoids (one), irritable bowel syndrome (two), and previous colorectal carcinoma (two).

For normal controls and patients with IBD and involvement of the sigmoid colon, biopsies were taken from the sigmoid. For patients with CD without disease in the sigmoid, biopsies were taken from the involved area. Table 1 gives details of age, sex, disease type and distribution, and drug treatment.

All patients gave written informed consent and the studies were approved by the East London and City Health Authority research ethics committee.

Assessment of Disease Activity

Disease activity in UC was assessed endoscopically using a standard score. This score was adapted and used to assess endoscopic disease activity in patients with CD because of the lack of availability of a standard score. Active disease was defined as scores 2 and 3 (contact or spontaneous mucosal bleeding), and inactive disease as 0 and 1 (normal or oedematous mucosa).

Disease activity was also assessed histologically in haematoxylin and eosin (H&E) stained sections of biopsies from inflamed mucosa.

Abbreviations: CD, Crohn’s disease; H&E, haematoxylin and eosin; IBD, inflammatory bowel disease; IQR, interquartile range; LP, lamina propria; PG, prostaglandin; TXS, thromboxane synthase; UC, ulcerative colitis
patients with both UC and CD using a semiquantitative score, as previously described.

Tissue processing

Biopsies collected at colonoscopy were immediately snap frozen in liquid nitrogen and then stored at −70°C until processed for immunostaining. Paired biopsies were placed in formalin for routine Gill’s H&E staining.

Immunohistochemistry for TXS

Frozen sections of the biopsies were cut at 6 µm, picked up on silane treated microscope slides, allowed to air dry, and fixed in acetone for two minutes. A monoclonal antibody against human thromboxane synthase (Tu 300), as previously used in studies of placental tissue, was applied at a dilution of 1/100 (in antibody diluent) and incubated with the tissue overnight at 4°C. Preliminary optimisation studies using an incubation time of one hour, although showing positive staining in the placenta, were unsuccessful with the colonic tissue. Bound antibody was detected by a standard biotin–streptavidin–peroxidase system using a Vector Elite kit (Vector Labs, Peterborough, UK).

In each immunohistochemistry run, placental bed tissue served as a positive control and omission of the primary antibody served as a negative control. Appropriate nonspecific staining blocks, including incubation with normal serum (twice for the double staining method), endogenous peroxidase block, intestinal alkaline phosphatase block, and avidin/biotin block were also used as controls. For the double staining method, additional blocks were incorporated in the form of levamisole, an inhibitor of alkaline phosphatase added to the substrate solution to eliminate background.

Test and control slides were stained in one run, both for single and double staining. The amount of TXS signal in the double staining method was comparable to that of TXS alone. Controls were always included. All the staining was performed by one person (CN).

Analysis of staining

All tissue was assessed on each slide. The proportion of lamina propria cells showing positive staining, regardless of the intensity, was determined by an experienced gastrointestinal histopathologist (RMF), who was blinded to the diagnosis and disease activity.

Double immunostaining for CD68 and TXS

Double staining using the antibody to TXS as above, together with a monoclonal antibody to the human macrophage antigen CD68, KP-1 clone (Dako Ltd, Ely, Cambridgeshire, UK), was performed. Tissue sections were first incubated overnight with anti-TXS, as described previously, washed thoroughly in distilled water, then incubated for one hour with anti-CD68, diluted 1/1000 (in antibody diluent). CD68 was detected using an alkaline phosphatase detection system, Vector ABC-AP (Vector Labs). Placental bed tissue served as a positive control for the demonstration of TXS and normal appendix served as control for CD68. Omission of the primary stage served as a negative control for each antibody.

Statistical analysis

Statistical comparisons between groups were made using the Mann-Whitney U test (two tailed). Correlations were assessed by Spearman’s rank correlation (two tailed).

RESULTS

Immunostaining of TXS in patients with IBD and controls

Immunohistochemical expression of TXS in lamina propria cells was cytoplasmic and often granular. No pattern of distribution within the lamina propria was discernable. The proportion of lamina propria cells staining for TXS was higher in patients with active IBD than in those with inactive IBD or controls (p = 0.02 and p = 0.002, respectively; figs 1 and 2).

<table>
<thead>
<tr>
<th>Table 1 Patient characteristics</th>
<th>UC</th>
<th>CD</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>9</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Median age (IQR) in years</td>
<td>48 (29–65)</td>
<td>48 (28–62)</td>
<td>67 (56–70)</td>
</tr>
<tr>
<td>Sex ratio (M:F)</td>
<td>5:4</td>
<td>0:4</td>
<td>3:2</td>
</tr>
<tr>
<td>Active disease</td>
<td>6</td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td>UC extent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extensive colitis</td>
<td>4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Left sided colitis</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Distal colitis</td>
<td>4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>CD extent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colonic</td>
<td>–</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td>Ileocolonic</td>
<td>–</td>
<td>3</td>
<td>–</td>
</tr>
<tr>
<td>Oral treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5ASA</td>
<td>6</td>
<td>3</td>
<td>–</td>
</tr>
<tr>
<td>Steroids</td>
<td>1</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>Azathioprine/6-mercaptopurine</td>
<td>0</td>
<td>1</td>
<td>–</td>
</tr>
</tbody>
</table>

CD, Crohn’s disease; IBD, inflammatory bowel disease; IQR, interquartile range; UC, ulcerative colitis.
Correlation of immunostaining and disease activity

There was a direct correlation between the proportion of lamina propria cells staining for TXS and disease activity, as determined both by endoscopic score \(p = 0.001 \) and by histological score on H&E stained biopsies \(p = 0.001 \); fig 3.

Double immunostaining

Double immunostaining for TXS and CD68 showed that a proportion of the cells expressing TXS were macrophages (fig 4).

DISCUSSION

We have demonstrated, for the first time, excess immunostaining for TXS in the cells of the lamina propria, including macrophages, of colorectal mucosal biopsies from patients with IBD. This upregulation of TXS expression, which correlated with disease activity, measured by endoscopic score and histology, may account for the recognised increased production of thromboxanes by inflamed intestinal mucosa\(^7\)–\(^11\) and in the blood of patients with IBD.\(^21\)

In vitro studies have shown that thromboxanes have proinflammatory actions. Thromboxane induces the activation of neutrophils,\(^6\) the production of leukotriene B4,\(^23\) and enhanced endothelial adhesion\(^24\) and subsequent diapedesis\(^25\) of neutrophils. Thromboxanes also induce apoptosis\(^26\) and modulate T cell function,\(^27\) and may have a role in ischaemia reperfusion injury.\(^28\)

“Preliminary studies of thromboxane synthase inhibitors have shown some benefits in patients with ulcerative colitis”\(^1\)

Vasoconstriction\(^\) and platelet aggregation\(^1\) are also induced by thromboxanes. In patients with active IBD, platelets are activated\(^10\) and show abnormal aggregation.\(^21\) Furthermore, platelet aggregates have been identified in the capillaries in inflamed rectal biopsies in IBD,\(^14\) and microvascular thrombosis has been proposed as an early pathogenic factor in CD.\(^12\) It has therefore been proposed that thromboxanes may play a role in the pathogenesis of IBD.\(^2\)

Preliminary studies of thromboxane synthase inhibitors have shown some benefits in patients with UC\(^14\)–\(^16\); however, the results of large randomised controlled trials are awaited.

TXS has been purified and is a cytochrome P450 enzyme.\(^13\) It has been identified in kidney,\(^34\) spleen,\(^35\) brain,\(^36\) and placenta,\(^37\) in addition to platelets,\(^38\) macrophages,\(^39\) lung fibroblasts,\(^20\) and other cell types. To our knowledge, this is the first study to investigate TXS immunostaining in intestinal mucosa.

The double staining technique confirmed that many cells in the lamina propria staining positively for TXS were macrophages. In accordance with studies in the placenta, where macrophages were identified as a source of TXS,\(^20\) and indicates that at least some of the excess TXS in inflamed IBD mucosa is located in

![Figure 2](http://www.jcp.bmj.com/)

Figure 2 (A) Heavy and (B) light staining for thromboxane synthase (TXS) in lamina propria cells in (A) active and (B) inactive inflammatory bowel disease. Brown staining indicates TXS.

![Figure 3](http://www.jcp.bmj.com/)

Figure 3 Correlation between the percentage of lamina propria (LP) cells staining positive for thromboxane synthase (TXS) and disease activity, as assessed by (A) endoscopic score\(^17\) and (B) histological score\(^18\) in patients with inflammatory bowel disease (closed diamonds) and controls (open triangles).

![Figure 4](http://www.jcp.bmj.com/)

Figure 4 Double staining, with some cells positive for both thromboxane synthase (TXS) and CD68 (arrow), suggesting that some of the cells expressing TXS were macrophages. Brown staining indicates TXS and red staining indicates CD68.
Take home messages

- There was a direct correlation between disease activity, measured endoscopically and histologically, and the percentage of lamina propria cells staining for thromboxane synthase in patients with inflammatory bowel disease.
- This increased expression of thromboxane synthase might result in increased thromboxane synthesis, which may in turn contribute to mucosal inflammation and intramucosal thrombogenesis.

ACKNOWLEDGEMENT

We are grateful to Dr R Nusing, Phillips University of Marburg, Germany, for kindly supplying us with the monoclonal antibody to thromboxane synthase (Tu300) used in these studies.

Authors’ affiliations

E Carty, D S Rampton, Department of Adult and Paediatric Gastroenterology, St Bartholomew’s and The Royal London School of Medicine and Dentistry, Queen Mary College, London UK

C Nicklais, R M Fearns, Department of Histopathology, St Bartholomew’s and The Royal London School of Medicine and Dentistry

REFERENCES

Thromboxane synthase immunohistochemistry in inflammatory bowel disease

E Carty, C Nickols, R M Feakins and D S Rampton

doi:

Updated information and services can be found at:
http://jcp.bmj.com/content/55/5/367

These include:

References

This article cites 37 articles, 10 of which you can access for free at:
http://jcp.bmj.com/content/55/5/367#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

- Inflammatory bowel disease (40)
- Clinical diagnostic tests (805)
- Immunology (including allergy) (1664)
- Inflammation (173)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/

Downloaded from http://jcp.bmj.com/ on September 8, 2017 - Published by group.bmj.com