Detection of the CD56+/CD45− immunophenotype by flow cytometry in neuroendocrine malignancies

G J Bryson, D Lear, R Williamson, R C W Wong

Aims: Antibodies against CD56 are primarily used in flow cytometric studies to detect natural killer cells. However, they may be useful in the identification of neuroendocrine malignancies, especially if the cells do not express CD45, indicating a non-leucocyte origin.

Methods: A retrospective review was conducted on all solid tissue flow cytometric studies performed between January 1997 and September 2001, to identify all cases with a CD56+/CD45− immunophenotype.

Results: Twelve neuroendocrine malignancies (five metastatic small cell carcinomas, three Merkel cell carcinomas, two metastatic undifferentiated neuroendocrine carcinomas, one metastatic pancreatic neuroendocrine carcinoma, and one neuroblastoma) were identified.

Conclusions: CD56+/CD45− neuroendocrine malignancies are only rarely detected in the flow cytometric analysis of solid tissue samples. However, the recognition of this immunophenotype is important to avoid their misclassification as natural killer cell malignancies. Furthermore, flow cytometry assists in the rapid identification of such cases, so that appropriate immunohistochemical studies can be performed to facilitate their correct diagnosis.

CD56 is the cluster differentiation (CD) assignment for the neural cell adhesion antigen, a membrane glycoprotein containing immunoglobulin-like domains. CD56 is widely expressed throughout the molecular and granular layers of the cerebellum and cerebral cortex, and is strongly expressed throughout the grey and white matter of the spinal cord. NK cells principally express the 140 kDa isoform of CD56.

The use of anti-CD56 antibodies, in immunohistochemical studies, has been reported to be of value in the diagnosis of neuroendocrine (for example, neuroblastoma, Merkel cell, and small cell carcinoma) and neuroectodermal (for example, Ewing's sarcoma) malignancies. In contrast, anti-CD56 antibodies are primarily used in flow cytometric studies to detect NK cells, although their usefulness in the detection of neuroectodermal malignancies, and their binding to small cell carcinoma cell lines have been reported.

CD59 is expressed on a variety of cell types including natural killer cells, certain T cell subsets, large granular lymphocyte leukaemias, some myeloid leukaemias, and cells of neural origin.

We now report a characteristic CD56+/CD45− immunophenotype in 12 neuroendocrine malignancies, with the absence of CD45 expression consistent with their non-leucocyte origin.

METHODS
Since 1997, the immunology laboratory of Queensland Health Pathology Services at the Royal Brisbane Hospital has used anti-CD56 antibodies conjugated to phycoerythrin (anti-CD56–PE) in the flow cytometric evaluation of tissue specimens for suspected lymphoma. Anti-CD56–PE, derived from the N901 (NKH-1) clone, was used in the following three colour fluorochrome combination on a Beckman Coulter XL (Beckman Coulter, Miami, Florida, USA) flow cytometer: anti-CD56–PE, anti-CD3–FITC (fluorescein isothiocyanate) and anti-CD45–PECYS (phycoerythrin-cyanin 5 tandem). All three conjugated monoclonal antibodies were supplied by Beckman Coulter.

A retrospective review was conducted of all such studies performed between January 1997 and September 2001 to identify all cases with a CD56+/CD45− immunophenotype.

RESULTS
From approximately 2000 studies, we identified 12 specimens that expressed the CD56+/CD45− immunophenotype (table 1). All cases were neuroendocrine malignancies, comprising five metastatic small cell carcinomas (four from an unknown primary, one from a lung primary), three Merkel cell carcinomas, two metastatic undifferentiated neuroendocrine carcinomas, one metastatic pancreatic neuroendocrine carcinoma, and one neuroblastoma.

All 12 cases demonstrated the same immunophenotype, with expression of CD56 but no expression of T cell antigens (CD3, CD5, CD7), B cell antigens (CD19, CD20), or the

Table 1 Final histological diagnoses of the CD56+/CD45− malignancies

<table>
<thead>
<tr>
<th>Case</th>
<th>Specimen</th>
<th>Final diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lymph node</td>
<td>Merkel cell carcinoma</td>
</tr>
<tr>
<td>2</td>
<td>Parotid gland</td>
<td>Metastatic small cell carcinoma (unknown primary)</td>
</tr>
<tr>
<td>3</td>
<td>Lymph node</td>
<td>Metastatic small cell carcinoma (unknown primary)</td>
</tr>
<tr>
<td>4</td>
<td>Lymph node</td>
<td>Metastatic undifferentiated neuroendocrine carcinoma</td>
</tr>
<tr>
<td>5</td>
<td>Lymph node</td>
<td>Metastatic pancreatic neuroendocrine carcinoma</td>
</tr>
<tr>
<td>6</td>
<td>Lymph node</td>
<td>Merkel cell carcinoma</td>
</tr>
<tr>
<td>7</td>
<td>Lymph node</td>
<td>Metastatic undifferentiated neuroendocrine carcinoma</td>
</tr>
<tr>
<td>8</td>
<td>Lymph node</td>
<td>Merkel cell carcinoma</td>
</tr>
<tr>
<td>9</td>
<td>Lymph node</td>
<td>Metastatic small cell carcinoma (lung primary)</td>
</tr>
<tr>
<td>10</td>
<td>Lymph node</td>
<td>Metastatic small cell carcinoma (unknown primary)</td>
</tr>
<tr>
<td>11</td>
<td>Chest wall mass</td>
<td>Metastatic small cell carcinoma (unknown primary)</td>
</tr>
<tr>
<td>12</td>
<td>Temple mass</td>
<td>Neuroblastoma</td>
</tr>
</tbody>
</table>

Abbreviations: CD, cluster differentiation; FITC, fluorescein isothiocyanate; NK, natural killer; PE, phycoerythrin; PECYS, phycoerythrin-cyanin 5 tandem

C

www.jclinpath.com
common leucocyte antigen CD45. Figure 1 shows a representative flow cytometric study from case 10 (metastatic small cell carcinoma) demonstrating CD56 expression in the absence of CD45 expression. The lymphoid (red) and small cell carcinoma populations (green) were colour backgated from the log 90° side scatter versus anti-CD45–PECY5 (phycoerythrin-cyanin 5 tandem) plot (see [C] below). (A) Log 90° side scatter (SS) versus forward scatter (FS): the lymphoid population (red) overlaps the small cell carcinoma population (green). (B) FITC (fluorescein isothiocyanate) versus PE (phycoerythrin) isotype controls: demonstrating the presence of significant autofluorescence/non-specific staining (blue) in this sample. (C) Log 90° side scatter versus anti-CD45–PECY5: the lymphoid population (red) is clearly CD45+ whereas the small cell carcinoma population (green) is CD45−, although autofluorescence/non-specific staining results in apparent weak CD45 expression. (D) Anti-CD3–FITC versus anti-CD56–PE: the small cell carcinoma population (green) is CD56+/CD3− (autofluorescence/non-specific staining again results in apparent weak CD3 expression) and clearly distinct from the lymphocytes (red). (E) Anti-CD56–PE versus anti-CD45–PECY5: the small cell carcinoma population (green) is CD56+/CD45− (apparent weak CD45 expression as a result of autofluorescence/non-specific staining), whereas the lymphocytes (red) are CD45+.

Figure 1 Flow cytometric dot plots of a metastatic small cell carcinoma of unknown primary (case 10), demonstrating CD56 expression in the absence of CD45 expression. The lymphoid (red) and small cell carcinoma populations (green) were colour backgated from the log 90° side scatter versus anti-CD45–PECY5 (phycoerythrin-cyanin 5 tandem) plot (see (C) below). (A) Log 90° side scatter (SS) versus forward scatter (FS): the lymphoid population (red) overlaps the small cell carcinoma population (green). (B) FITC (fluorescein isothiocyanate) versus PE (phycoerythrin) isotype controls: demonstrating the presence of significant autofluorescence/non-specific staining (blue) in this sample. (C) Log 90° side scatter versus anti-CD45–PECY5: the lymphoid population (red) is clearly CD45+ whereas the small cell carcinoma population (green) is CD45−, although autofluorescence/non-specific staining results in apparent weak CD45 expression. (D) Anti-CD3–FITC versus anti-CD56–PE: the small cell carcinoma population (green) is CD56+/CD3− (autofluorescence/non-specific staining again results in apparent weak CD3 expression) and clearly distinct from the lymphocytes (red). (E) Anti-CD56–PE versus anti-CD45–PECY5: the small cell carcinoma population (green) is CD56+/CD45− (apparent weak CD45 expression as a result of autofluorescence/non-specific staining), whereas the lymphocytes (red) are CD45+.

DISCUSSION
In our laboratory, CD56+/CD45− neuroendocrine malignancies are only rarely detected in solid tissue specimens, with...
Anti-CD56 antibodies should be included in flow cytometric studies of solid tissue specimens wherever possible.

Recognition of the CD56+/CD45− immunophenotype can help avoid the potential misclassification of such specimens as natural killer cell malignancies, especially if autofluorescence/non-specific staining is misinterpreted as weak CD45 expression.

The CD56+/CD45− immunophenotype is a useful rapid indicator for the presence of neuroendocrine malignancies, thus leading to the appropriate immunohistochemical studies necessary to facilitate their correct diagnosis.

“Anti-CD56 antibodies should be included in flow cytometric studies of solid tissue specimens wherever possible. Recognition of the CD56+/CD45− immunophenotype can help avoid the potential misclassification of such specimens as natural killer cell malignancies, especially if autofluorescence/non-specific staining is misinterpreted as weak CD45 expression. The CD56+/CD45− immunophenotype is a useful rapid indicator for the presence of neuroendocrine malignancies, thus leading to the appropriate immunohistochemical studies necessary to facilitate their correct diagnosis.”

The detection of CD56 and CD57 expression on neuroectodermal malignancies by flow cytometry has been reported previously, but the expression of CD45 in these cases was not mentioned, probably because only two colour flow cytometric studies were performed. However, because neuroectodermal malignancies are not routinely sent to our department for flow cytometric studies, we were unable to determine whether these malignancies would also demonstrate the CD56+/CD45− immunophenotype. Furthermore, because we do not routinely test for CD57 expression, we are unable to comment on whether the 12 neuroendocrine malignancies in our series would have also expressed CD57.

Our study highlights the usefulness and importance of including anti-CD56 antibodies in flow cytometric studies of solid tissue specimens wherever possible. Furthermore, the recognition of this CD56+/CD45− immunophenotype is important to avoid the potential misclassification of such specimens as NK cell malignancies, especially if autofluorescence/non-specific staining is misinterpreted as weak CD45 expression.

In conclusion, we report that flow cytometric detection of the CD56+/CD45− immunophenotype is a useful rapid indicator for the presence of neuroendocrine malignancies, thus leading to the appropriate immunohistochemical studies necessary to facilitate their correct diagnosis.

References

Detection of the CD56+/CD45− immunophenotype by flow cytometry in neuroendocrine malignancies

G J Bryson, D Lear, R Williamson and R C W Wong

doi:

Updated information and services can be found at:
http://jcp.bmj.com/content/55/7/535

These include:

Supplementary Material
Supplementary material can be found at:
http://jcp.bmj.com/content/suppl/2002/09/19/55.7.535.DC1

References
This article cites 8 articles, 3 of which you can access for free at:
http://jcp.bmj.com/content/55/7/535#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Errata
An erratum has been published regarding this article. Please see next page or:
/content/55/10/800.3.full.pdf

Topic Collections
Articles on similar topics can be found in the following collections

- Immunology (including allergy) (1664)
- Endocrine cancer (84)
- Cancer: dermatological (106)
- Dermatology (222)
- Paediatric oncology (111)
- Lung cancer (oncology) (120)
- Lung cancer (respiratory medicine) (120)
- Pancreas and biliary tract (157)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/
CORRESPONDENCE

Acute erythremic myelosis (true erythroleukaemia): a variant of AML FAB-M6

Our group has been actively researching the acute erythroleukaemias since the late 1980s, during which time, we have developed and extensively published our classification: 1–5
- acute erythroleukaemia, M6a (traditional FAB-M6, DiGuglielmo’s syndrome, 1917)
- acute erythroleukaemia, M6b (pure erythroleukaemia, DiGuglielmo’s disease, 1926)
- acute erythroleukaemia, M6c (mixed erythroleukaemia).

We have also published abstracts and presented this classification at meetings of the International Academy of Pathology, International Society of Haematology, and the American Society of Haematology, and our recommendations have also been cited in the recent literature. Therefore, we are surprised to find the M6b subtype now “discovered” and re-named in the article by Hasserjian et al, 6 and the M6c subtype completely overlooked. Although we suspect this incongruity to be an oversight, we believe it is important to set the record straight.

This established classification of the acute erythroleukaemias is based partly on the old FAB criteria and also upon morphological, cytochemical, and immunophenotypical criteria.7 All bone marrow aspirates demonstrate >50% erythrocytic precursors, with erythroid dysplasia. Dysplasia of the granulocytic and megakaryocytic cell lines may or may not be present. The M6a subtype is defined as >30% blasts of the non-erythrocytic component (FAB exclusion criteria); the M6b subtype is defined as >30% pronormoblasts of the erythrocytic elements; and the M6c subtype has >30% blasts and >30% pronormoblasts by the aforementioned exclusion criteria. Because the dysplastic changes may, at times, make definitive characterisation of the blasts as erythrocytic versus non-erythrocytic difficult, the morphological features must always be confirmed by cytochemical stains, immunohistochemical stains, and/or flow cytometric analysis.

These three separate subtypes must be distinguished from one another to provide useful prognostic information for the clinician and the patient. When treated with the standard myeloid protocol, the M6a and M6c subtypes demonstrate a very high remission rate, whereas most patients with the M6b subtype remain refractory to treatment. Notably, patients with the M6c subtype remain in remission for a significantly shorter time than the M6a group. Mean survival for these subtypes is: M6a, 31.4 (SD, 32) months; M6b, 3.15 (SD, 4.2) months; M6c, 10.5 (SD, 12.7) months.

The malignant clonal cell of origin manifesting as acute erythroleukaemia of any subtype appears to be a multipotent stem cell,8 which shows varying degrees of erythrocytic and granulocytic lineage maturation. Therefore, the three distinct subtypes of acute erythroleukaemia are not three separate diseases, but rather represent a spectrum of the same disease. The poor remission rate and short survival characteristic of this disorder are dependent upon: (1) a high pronormoblast to myeloblast ratio within diagnostic bone marrow aspirates, (2) a high proliferative index, (3) “unfavourable” cytogenetic aberrations, and (4) a high incidence of P-glycoprotein expression (the multidrug resistance phenotype).

F M Mazzella
Medical College of Georgia, Augusta, 30912–3603 Georgia, USA; fmazzella@mail.mcg.edu

H R Schumacher
University of Cincinnati Medical Centre, Cincinnati, 45367 Ohio, USA

References

CORRECTIONS
