A case of rapidly enlarging unilocular thymic cyst

Thymic cysts occur relatively rarely and account for only about 3% of all anterior mediastinal masses. Although thymic cysts usually grow very slowly, there have been three reported cases of unilocular thymic cysts that enlarged rapidly as a result of intra-cystic haemorrhage: two cases occurred in children with aplastic anaemia and one occurred in a 13 year old boy with no other symptoms. Here, we present a case of a unilocular thymic cyst, which appeared within one year, was associated with chronic inflammation, and had findings different from the cases reported previously.

The patient was a 63 year old man, who had been well with no apparent symptoms of disease. There was no history of trauma. He complained of dull anterior chest pain in April 2001, and a chest x ray film showed an abnormal shadow in the left mediastinum. A chest x ray film taken one year before for a routine medical examination had shown no abnormality (fig 1). Computed tomography and magnetic resonance imaging showed a unilocular cyst measuring 8 x 6 cm in the left side of the anterior mediastinum (fig 2). The cyst was sharply demarcated from the mediastinal fat. Haematological and laboratory examinations showed no inflammation.

Thoracoscopic surgery, with a left thoracic approach, was conducted on 8 May 2001. The cyst originated in the thymic tissue and adhered extensively to the left upper lobe of the lung. The cyst and its neighbouring thymic tissue were resected completely. Histological examination showed abundant deposits of haemosiderin pigments. Immunohistochemical examination using anti-CD3 and anti-CD79a antibodies showed that the infiltrating lymphocytes were a mixture of both T and B cells. There was no indication of caseous necrosis or Langhans giant cells. The patient is now doing well without recurrence of the cyst four months after surgery.

Most thymic cysts are found incidentally during chest x ray or computed tomography procedures, and they usually do not enlarge in a short period. The pathogenesis of thymic cysts is currently thought to be congenital, originating from branchial pouch remnants. However, in our present case the thymic cyst was different from the congenital form because it enlarged rapidly. The cystological and histological findings were also different from those of congenital thymic cysts in the following respects: (1) the fluid within the cyst showed numerous old red blood cells with some lymphocytes and macrophages; and (2) the cyst wall showed non-specific chronic inflammation.

Although the cyst in our present case was unilocular, its pathological features were something like those of a multilocular thymic cyst (MTC), as reported by Suster and Rosai. They reported the clinical and pathological features of 18 cases of anterior mediastinal MTC, collected from personnel consultant files. The main histological features of the MTCs included multiple cystic cavities partially lined by squamous, columnar, or cuboidal epithelium; scattered nests of non-neoplastic thymic tissue within the cyst walls; and severe acute and chronic inflammation accompanied by fibrovascular proliferation, necrosis, haemorrhage, and granulation tissue formation. They concluded that the MTCs probably resulted from cystic transformation in the ductal epithelial formations of the branchial pouch or from a related process induced by acquired inflammation. Our present case showed pathological findings similar to those of MTC except

Figure 1 The chest x ray film taken one year before presentation (left) shows no abnormality, whereas the film taken at presentation (right) shows the abnormal shadow at the left mediastinum.

Figure 2 Magnetic resonance imaging shows a unilocular cyst 8 x 6 cm in diameter at the left anterior mediastinum.
Analysis revealed leucopenia (leucocytes, 700/μl), and the patient developed fever with chills. To prevent cytomegalovirus infection, on day 10, the patient started oral ganciclovir treatment. Oral ganciclovir was given until day 36, and then treatment was stopped. On day 37, acyclovir was added, and antithymocyte globulin (ATG) was administered to the patient on day 40. The patient was then treated with corticosteroids (prednisolone) and 1 mg/kg of cyclosporine daily. Intravenous immunoglobulin (0.4 g/kg) was administered on day 41. To prevent toxoplasmosis, on day 10, the patient started treatment with tetracycline, clindamycin, and fluconazole. The patient was given clindamycin because it was considered to be effective for the treatment of disseminated toxoplasmosis. On day 31, the patient developed a diffuse bilateral interstitial pneumonitis. Despite broad-spectrum antimicrobial treatment (ceftazidine, ciprofloxacin, teicoplanin, and fluconazole), the patient developed fever with chills. On day 36, the patient developed hypercalcaemia at the time of relapse. The patient was given hydrocortisone in BAL fluid or blood samples. The use of both morphology and PCR improves the sensitivity of the diagnosis.12

D Wendem, N Carbonell, M Svrek, O Chazouillères, J-F Flejou
Departments of Pathology and Hepatology, Hôpital Saint-Antoine, APHP, 184 Rue du Faubourg Saint-Antoine, 75064 Paris Cedex 12, France; dominique.wendum@ap-hop-paris.fr

References

Incidence and prognostic significance of hypercalcaemia in B-cell non-Hodgkin’s lymphoma

Hypercalcaemia is considered to be rare in B-cell non-Hodgkin’s lymphoma (B-NHL).1 In this letter I report eight cases with this complication among 112 patients with B-NHL diagnosed with B-NHL over a period of ﬁve years. The diagnosis of B-NHL was established by morphology and immunohistochemistry of biopsy specimens, and staging was done by computed tomography scan of the chest and abdomen, together with bone marrow aspirate and trephine biopsy. There were 70 patients with high grade B-NHL, 52 of whom had advanced disease (stage III/IV). The remaining 42 had low grade B-NHL. Five patients with high grade B-NHL presented with hypercalcaemia and another patient developed hypercalcaemia at the time of relapse. One patient with low grade B-NHL developed hypercalcaemia at the time of transformation to Richter’s syndrome. One other patient with low grade B-NHL developed hypercalcaemia at the time of relapse. All patients had advanced disease. Table 1 shows the details of the patients.

Median survival of the five patients with high grade B-NHL presenting with hypercalcaemia was 10 months. This was signiﬁcantly shorter than the 47 other patients with advanced disease (21 months; p < 0.05) who did not present with hypercalcaemia. The median survival of all eight patients from the time of developing hypercalcaemia was only nine months.

All five patients (cases 1–5) presenting with hypercalcaemia initially responded to hydration and pamidronate 90 mg intravenously, with normalisation of the serum
calcium concentration. Parathyroid hormone was undetectable in one patient and low normal in the other four. None of the patients had a paraprotein in the serum or urine or had bone marrow plasmacytosis. No lytic bone lesions were seen on skeletal survey. Once the diagnosis of B-NHL was established they were treated with standard chemotherapy protocols. None of these five patients achieved complete remission with the standard protocol or with further intensive chemotherapy and/or radiotherapy. During the course of the disease one patient had recurrent hypercalcaemia and required intravenous infusion of pamidronate on four occasions.

One patient (case 6) with high grade B-NHL presented in stage IIIB and achieved complete remission with standard chemotherapy. He relapsed after 24 months in stage IVB with bone marrow involvement and hypercalcaemia. There was no plasmacytosis in the bone marrow and no paraprotein was detected. He was treated with intravenous pamidronate (1 g) in addition to normalisation of serum calcium concentration. He showed only a partial response to intensive chemotherapy. Hypercalcaemia recurred terminally.

None of the 42 patients with low grade B-NHL presented with hypercalcaemia. One of these patients (case 7) transformed to high grade lymphoma (Richter’s syndrome) after 49 months. She presented initially with generalised lymphadenopathy and bone marrow involvement and achieved partial remission with chlorambucil. Her disease relapsed after 24 months but she again achieved partial remission with the same drug. She developed hypercalcaemia at the time of transformation. Hypercalcaemia did not respond to repeated intravenous infusion of pamidronate. Her disease recurred terminally after 5 years and both lymphadenopathy and bone marrow involvement and mimicking multiple myeloma. The cause of hypercalcaemia in B-NHL appears to be humoral. A raised concentration of parathyroid hormone related protein was found in some patients but not in all.1 A close correlation between the concentration of this protein and hypercalcaemia was also found in some patients, which strongly suggests a causal role.1 The importance of the other humoral mediators of bone resorption, such as tumour necrosis factor α and interleukin 6, is conjectural.2

Hypercalcaemia is usually associated with a poor prognosis in malignant diseases.3 B-NHL appears to be no exception. It is concluded that hypercalcaemia is not rare in B-NHL, particularly in the high grade type, and carries a poor prognosis.

References

Table 1 Details of the clinical and laboratory findings of the patients with hypercalcaemia and non-Hodgkin’s lymphoma (NHL)

<table>
<thead>
<tr>
<th>Case</th>
<th>Age/ Sex</th>
<th>Type of NHL and stage at diagnosis</th>
<th>Time (months) from diagnosis to hypercalcaemia</th>
<th>Highest calcium value (mmol/l)</th>
<th>Recurrence of hypercalcaemia</th>
<th>Treatment</th>
<th>Response</th>
<th>Survival (months) from developing hypercalcaemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>51/M</td>
<td>DLB IIB</td>
<td>At diagnosis</td>
<td>3.08</td>
<td>Recurred terminally</td>
<td>CIDEBOM</td>
<td>NR</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>23/M</td>
<td>DUBC</td>
<td>At diagnosis</td>
<td>4.05</td>
<td>No recurrence</td>
<td>DEXR</td>
<td>PR</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>71/F</td>
<td>HGGM IVB</td>
<td>At diagnosis</td>
<td>4.16</td>
<td>Recurrent</td>
<td>CHOP</td>
<td>PR</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>70/F</td>
<td>DLBC</td>
<td>At diagnosis</td>
<td>2.96</td>
<td>No recurrence</td>
<td>DEXR</td>
<td>NR</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>61/F</td>
<td>HGGM IVB</td>
<td>At diagnosis</td>
<td>2.92</td>
<td>No recurrence</td>
<td>CIOP</td>
<td>NR</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>57/M</td>
<td>DLBC</td>
<td>24, at relapse</td>
<td>3.16</td>
<td>Recurred terminally</td>
<td>CIOP</td>
<td>CR</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>65/F</td>
<td>IVB at relapse</td>
<td>49, at the time of transformation</td>
<td>3.02</td>
<td>No response to treatment</td>
<td>Chlorambucil</td>
<td>PR</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>74/M</td>
<td>FCC IVA</td>
<td>15, at relapse</td>
<td>3.27</td>
<td>Recurred terminally</td>
<td>Chlorambucil</td>
<td>PR</td>
<td>9</td>
</tr>
</tbody>
</table>

Normal calcium range, 2.2–2.6 mmol/l. Type of NHL: DLB, diffuse large B cell; HGGM, high grade gastric malignity; FCC, follicular centre cell. Chemotherapy protocols: C, cyclophosphamide; I, idarubicin; D, dexamethasone; E, etoposide; B, bleomycine; O, vincristine; M, methotrexate in BOM, melphalan in mini-BEAM; H, doxorubicin; P, prednisolone; A, ARA-C; DXR, radiotherapy. Response: CR, complete response; NR, no response; PR, partial response.
Paraffin wax embedded muscle is suitable for the diagnosis of muscular dystrophy

The article by Sheriff et al. on the use of paraffin wax embedded muscle for the diagnosis of muscular dystrophy illustrates some valid points, but some are questionable. Excellent results are illustrated and some retrospective studies of archival material will clearly be possible.

However, many of us in the field of muscle pathology will be alarmed at the statement in the discussion that “...frozen muscle tissue is no longer necessary for the diagnosis of muscular dystrophy, with the exception of LGMD2F.” This statement is premature, inaccurate, and only deals with a limited number of muscular dystrophies. It also takes no account of the fact that the type of neuroimmunological disorder is not known before a biopsy is taken, so tissue must be prepared for all possible studies.

Enzyme histochemistry still has an important role, and requires frozen tissue. The authors take no account of the importance of immunoblotting, which requires frozen tissue, and that some defective proteins can only be studied on immunoblots (for example, calpain 3, responsible for limb girdle muscular dystrophy 2A).

No evidence of the diagnostic use of the technique is shown; only the known localisation of antibodies in control muscle. No account is taken of the importance of immunoblotting to the objective assessment of muscle pathology (that is, for western blotting), but to stress that we should not ignore humble paraffin wax embedded sections. It is vital to emphasise that with the help of immunohistochemistry they facilitate the accurate diagnosis of many muscular dystrophies and other muscle pathologies, such as nemalin myopathy.

Dr Sewry’s comments on the practicality of frozen material are all possible with the advent of antigen retrieval techniques. Dr Sewry’s example of laminin B1 and fetal myosin on paraffin wax embedded sections is currently valid, but antigen retrieval techniques are evolving and new antibodies are being developed, allowing larger antigenic determinants to be used on paraffin wax embedded tissue.

The question of the ease of interpretation of paraffin wax embedded versus frozen tissue is partly a matter of re-education. Adequate freezing, storage, and orientation of frozen material is no problem in specialist centres; however, referred frozen tissue from centres who had an atherogenic lipid profile also manifested bilateral ear lobe creases. The importance of this is unclear and also merits further study, particularly because these are thought to be associated with cardiovascular disease.1

C A Sewry
Department of Histopathology, Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry SY10 7AG, UK, c.sewry@rjc.ac.uk

References

Authors’ reply

I was very interested in Dr Twomey’s letter suggesting that growth hormone may be a possible link between skin tags and the atherogenic lipid profile. Unfortunately, we do not have growth hormone determinations in our patients so we are unable to test his hypothesis, although presumably it would not be too difficult to design such studies. The cutaneous manifestations of lipid disorders are relatively unexplained and unexplored. Why—for example, do xanthelasma or eruptive xanthoma appear at certain sites and not in every patient with lipid abnormalities? Interestingly, one of the patients in our study who had an atherogenic lipid profile also manifested bilateral ear lobe creases. The importance of this is unclear and also merits further study, particularly because these are thought to be associated with cardiovascular disease.1

M Crook
Department of Chemical Pathology, 5th Floor Tower, Guy’s Hospital, London SE1 9RT, UK; martin.crook@gstt.nhs.uk

References

The role and histological classification of needle core biopsy in conjunction with fine needle aspiration cytology in the preoperative assessment of impalpable breast lesions

I read with interest the article on the role and histological classification of needle core biopsy in conjunction with fine needle aspiration cytology in the preoperative assessment of impalpable breast lesions by Ibrahim et al. in the February 2001 edition of the journal.

These findings are at variance with the published literature. My own research on
FNAC of impalpable breast lesions was non-diagnostic (no epithelial cells) in 14% of cases. When this was combined with imaging (ultrasound) all of the non-diagnostic cases were resolved, with 70% showing no change on follow up, 17% producing benign histology, and 13% yielding a malignant outcome. The inadequacy rate, sensitivity, and positive predictive value for the symptomatic lesions were 4%, 92.2%, and 100%, respectively.

In a further study, I compared FNAC cytology with NBC at several anatomical sites, including the breast. NBC was only marginally better, occasionally offering additional information. This slight advantage resulted from the availability of tissue from the first and often the only pass for assessment of architecture and the performance of ancillary tests.

The main reasons for the abandonment of FNAC in favour of NBC in the preoperative management of patients with breast lesions are failure of the aspirator to produce diagnostic material and unfamiliarity of the interpreter with the subtleties of breast FNAC.

I believe that by taking an active role with on-site management of the FNAC material and discussion with radiological colleagues, the cytopathologist could offer an FNAC service comparable to surgical pathology in sensitivity and very similar to frozen sections in specificity.

FNAC is cost effective, with consistent results in experienced hands; sensitive, with relatively few false negative results; and highly specific.

I M Zardawi
Mayne Health, Newcastle laboratory, PO Box 801, Newcastle, New South Wales, Australia; zardawi@hotmail.com

References

CSF spectrophotometry in the diagnosis of subarachnoid haemorrhage

The recent “Best Practice” article by Dr Cruickshank does not mention pseudoxanthochromia caused by contamination of the cerebrospinal fluid (CSF) with iodine solution at the time of sample collection. The problem seems to occur when iodine solution is applied to the patient’s skin and the operator’s glove, and then the specimen is contaminated. When combined with a traumatic tap in a normal patient, this technique can mimic the appearance of subarachnoid haemorrhage. Clues to the presence of pseudoxanthochromia are iodine staining around the outside of the specimen container, and the absorbance maximum of iodine is typically 445 nm compared with bilirubin at 450–460 nm. Preparation of the skin with chlorhexidine instead of iodine avoids this source of potential confusion.

S A Iversen
Brighton Healthcare NHS Trust, Eastern Road, Brighton BN2 5BE, UK; Andrew.iversen@bsuh.nhs.uk

Another case of mantle cell lymphoma presenting as breast masses

We read with great interest the recently published article by Windrum et al about a mantle cell lymphoma presenting as a breast mass. A separate case of mantle cell lymphoma involving both breasts was also reported last year.

We wish to report the third case of a mantle cell lymphoma involving the breast, in this case presenting as bilateral breast masses. The patient is a 77 year old woman whose bilateral masses were palpated on routine physical examination. Core biopsies were performed and the biopsied tissues were processed routinely in our laboratory. All microscopic patterns were identical bilaterally. The entirety of the specimen consisted of a diffuse monomorphic population of small lymphocytes. Adipose tissue or residual ductal units were not identified. The immunohistochemical profile of the tumour was evaluated on 4 µm thick, dewaxed sections using the standard streptavidin–biotin immunoperoxidase technique with diaminobenzidine as chromogen. The cells were strongly positive for CD5 (clone 54/F6; dilution, 1/80; Dako), Carpinteria, California, USA), cyclin D1 (clone AB-1; dilution, 1/100; Neomarkers, Fremont, California, USA), and bcl-2 (monoclonal; dilution, 1/40; Dako), but were negative for CD23 (clone MHM-6; dilution, 1/100; Dako).

We interpreted this immunophenotypic profile as being most consistent with mantle cell lymphoma. Several types of lymphoma have been reported in the breast, with diffuse large B cell non-Hodgkin’s lymphoma being the most common. These three cases show that mantle cell lymphoma should be included in that differential diagnosis.

O Fadare, P Shukla
Department of Pathology, Yale-New Haven Hospital/Yale University School of Medicine, 20 York Street, East Pavilion 2–631, New Haven, CT 06520, USA; Oluwole.fadare@yale.edu

References
A case of rapidly enlarging unilocular thymic cyst

H Nomori, H Horio, K Suemasu, H Orikasa, K Yamazaki and K Nakano

doi: 10.1136/jcp.55.8.636

Updated information and services can be found at:
http://jcp.bmj.com/content/55/8/636

These include:

References

This article cites 4 articles, 0 of which you can access for free at:
http://jcp.bmj.com/content/55/8/636#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/