Metastasis of solid tumours in bone marrow: a study from Kashmir, India

Between 1935 and 2001, many studies have appeared in the literature from different parts of the world on bone marrow invasion by solid tumours. After lymphoma, the primary tumours that most frequently involve the bone marrow are malignancies of the prostate, breast, lungs, thyroid, kidney, and stomach.

Metastatic deposits of malignant melanoma have also been described. In many instances, primary tumours remain clinically undetected and are identified only at necropsy.

The value of bone marrow aspiration in the diagnosis of malignant neoplasms was confirmed when four of eight cases of malignant melanoma were found to harbour tumour deposits in the bone marrow. In 57 patients with known carcinoma of the prostate, five had carcinoma cells in the bone marrow, with no other diagnostic evidence of skeletal system involvement. The usefulness of such a comparatively simple procedure is emphasised by studies of large series of patients with known malignancies, especially when the primary tumour is known to have a predilection for the skeletal system.

The patients in the abovementioned studies had known primary tumours and at present bone marrow aspiration/biopsy is routinely performed for staging of tumours, but the high incidence of metastatic deposits found in these bone marrows emphasises the practicability of routine bone marrow aspiration in patients with suspected malignancy or severe anaemia. It is difficult to determine from the literature the incidence of malignant cells in routine series of unselected bone marrow aspirations, so we investigated the usefulness of routine bone marrow examination for the diagnosis of malignancies.

A one year prospective study covering the year 2001 was conducted in the department of pathology, Government Medical College, Srinagar, Kashmir, India. The bone marrow smears were routinely stained by Leishman's stain and Sudan black stain were used as and when required. Of the 318 bone marrow samples studied during the year 2001, eight cases contained metastatic deposits. All of the patients in our present study had pallor (anaemia) as one of the main symptoms, and underwent bone marrow aspiration to determine which type of anaemia they were suffering from. In patients with metastatic deposits the normal haemopoietic cells of the bone marrow are replaced by tumour cells, resulting in myelophthisic anaemia, and later on they are liable to develop myeloid metaplasia and myelofibrosis. In most of the cases, the bone marrow was difficult to aspirate, especially in cases of epithelial cell deposits, with mostly carcinomas of the gastrointestinal tract contained in a background of peripheral blood—a fact that has already been reported.

After leukaemia, lymphoma most commonly involves the bone marrow and almost 10% of cases of lymphoma invade the bone marrow. In our present study, lymphoma (non-Hodgkin lymphoma) made up a quarter of the secondary tumours of the bone marrow, along with neuroblastoma (two cases)—a childhood tumour. Neuroblastaoma and non-Hodgkin lymphoma, and acute lymphoblastic leukaemia pose a considerable amount of difficulty in diagnosis because all three are round cell tumours with a very similar morphological appearance. In acute lymphoblastic leukaemia, the peripheral blood film examination is of paramount importance because it shows the presence of lymphoblasts in the bone marrow. These cells are usually identified in groups, even at low power examination, and may show neural or neurofibrillary differentiation. Non-Hodgkin lymphoma is thought of as a malignancy of old age, although it can be seen at any age; however, childhood lymphomas are mostly of high grade.

In most studies, the incidence of tumour deposits in the bone marrow from gastrointestinal tumours was low, but they made up a quarter of the cases presented here (two cases). This could be explained by the low number of cases in our study, together with the high incidence of gastrointestinal cancers, especially of the oesophagus and stomach, seen in Kashmir.

Deposits from prostate and breast tumours (one case each) are known to have a predilection for skeletal metastasis.

Finally, several features worthy of comment are that the metastatic tumour cells are easily identified in the bone marrow smears because they look foreign within the native bone marrow cell population. These cells are usually identified in groups, even at low power examination, because they are larger than most of the bone marrow cells. Single cells are more difficult to recognise, although they never resemble the normal bone marrow cells. The primary site of the malignant deposits may be extremely difficult to determine on a morphological basis only, but their origin can sometimes be inferred from their morphological appearance, especially in mucinous producing carcinoma, squamous carcinoma, some adenocarcinomas, and in many cases of metastatic neuroblastoma or melanoma.

RA Tasleem, ND Chowdhary
Department of Pathology, Government Medical College, Srinagar 190001, Kashmir, India; kadrim@sancharnet.in

S M Kadri
Department of Microbiology, Government Medical College, Srinagar

Q A Chowdhary
Government Medical College, Srinagar

References

Fatal water intoxication

Water intoxication can occur in a variety of different clinical settings but is generally not well recognised in the medical literature. The condition may go unrecognized for many days when the patient may have symptoms of confusion, disorientation, nausea, and vomiting, but also changes in mental state and psychotic symptoms. Early detection is crucial to prevent severe dehydration, which can lead to seizures, coma, and death.

The patient reported here was a 64 year old woman with a known history of mitral valve disease and renal failure. On the evening before her death, she began compulsively drinking water in vast quantities, estimated at between 30 and 40 glasses, and this was interspersed with episodes of vomiting. She became hysterical and also distressed, shouting that she had not drunk enough water. She declined medical attention but continued to drink water after she had gone to bed. She later fell asleep and died some time later.

A postmortem examination was carried out six hours later. The pituitary and adrenals were normal and there was no evidence of a bronchial tumour. There were bilateral pleural effusions of 200 ml on each side and the cut surfaces of the lungs (568 g and 441 g) exuded frothy pink fluid. The heart (461 g) showed evidence of mitral valve disease and left ventricular hypertrophy. Within the stomach there was 800 ml of watery fluid and the intra-abdominal organs were generally wet.

Postmortem toxicoanalysis was negative. A sample of vitreous humour showed a sodium concentration of 92 mmol/litre (serum reference range, 132–144). Potassium, urea, and glucose were all within the serum reference ranges. Blood cortisol was raised, excluding an Addisonian crisis.

The cause of death was given as hypotension as a result of acute water intoxication.

Water intoxication provokes disturbances in electrolyte balance, resulting in a rapid decrease in serum sodium concentration and eventual death. The development of acute dilutional hypotenaemia causes neurological symptoms because of the movement of water into the brain cells, in response to the fall in...
extracellular osmolality. Symptoms can become apparent when the serum sodium falls below 120 mmol/litre, but are usually associated with concentrations below 110 mmol/litre. Severe symptoms occur with very low sodium concentrations of 90–105 mmol/litre. As the sodium concentration falls, the symptoms progress from confusion to drowsiness and eventually coma. However, the rate at which the sodium concentration falls is also an important factor, and the acute intake of large volumes of water over a short period of time, as occurred in this case, would have produced a rapid drop in serum sodium, which was fatal.

Postmortem serum samples are unsuitable for sodium measurement because concentrations decrease after death and there is considerable individual variation. However, vitreous sodium concentrations are stable in the early postmortem period, and the concentration in vitreous humour is similar to that found in normal serum. Studies have shown that abnormal vitreous humour sodium concentrations had corresponding antemortem changes. Both clinicians and pathologists need to be aware of this condition, which may manifest itself as a psychotic illness and so go unrecognised in its early stages. Early detection is crucial to prevent fatal complications.

D J Farrell
Department of Histopathology, Torbay Hospital, Lawes Bridge, Torquay, Devon, TQ2 7AA, UK; desmond.farrell@devonhct.swest.nhs.uk

L Bower
Department of Clinical Chemistry, Torbay Hospital

References

Salivary gland-like tumours of the breast: surgical and molecular pathology. Pia-Foschini M, Reis-Filho JS, Eusebi V, et al. J Clin Pathol 2003;56:497–506. The name of the first author should have been Foschini MP not Pia-Foschini M.

CORRECTION

Full details of events to be included should be sent to Maggie Butler, Technical Editor JC P, The Cedars, 36 Queen Street, Castle Hedingham, Essex CO9 3HA, UK. Email: maggie.butler2@btopenworld.com

Medicare India
6–8 April 2004, Pragati Maidan, New Delhi, India
Further details: Rob Grant, Kinex Log, 5 New Quebec Street, London W1H 7DD, UK (Tel: +44 (0) 207 723 8020; Fax: +44 (0) 207 723 8060; Email: rob.grant@kinexlog.com; Website: www.medicare-expo.com or www.kinexlog.com)
Metastasis of solid tumours in bone marrow: a study from Kashmir, India

R A Tasleem, N D Chowdhary, S M Kadri and Q A Chowdhary

J Clin Pathol 2003 56: 803
doi: 10.1136/jcp.56.10.803

Updated information and services can be found at:
http://jcp.bmj.com/content/56/10/803.1

These include:

References

This article cites 5 articles, 0 of which you can access for free at:
http://jcp.bmj.com/content/56/10/803.1#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/