Helicobacter pylori water soluble surface proteins prime human neutrophils for enhanced production of reactive oxygen species and stimulate chemokine production

T Shimoyama, S Fukuda, Q Liu, S Nakaji, Y Fukuda, K Sugawara

Backgrounds/Aims: Chronic gastritis induced by Helicobacter pylori is characterised by considerable neutrophil infiltration into the gastric mucosa without mucosal invasion of bacteria. Bacteria have different characteristics with respect to their ability to stimulate human neutrophils to produce reactive oxygen species and chemokines. The aim of this study was to examine the effects of H pylori water extracts on the oxidative burst and chemokine production of human neutrophils.

Methods: Helicobacter pylori cells were extracted by harvesting into distilled water and centrifugation. Neutrophils were incubated with H pylori water extracts and the production of reactive oxygen species was measured using luminol dependent chemiluminescence (LmCL). In addition, the concentrations of chemokines (interleukin 8 (IL-8), macrophage inflammatory protein 1-α (MIP1-α), and MIP1-β) were measured by enzyme linked immunosorbent assay. Neutrophils were also stimulated by opsonised zymosan (OZ) after preincubation with H pylori water extracts.

Results: Helicobacter pylori water extracts alone induced only a weak oxidative burst but preincubation of neutrophils with water extracts dose dependently enhanced the LmCL response stimulated by OZ. Helicobacter pylori water extracts also stimulated neutrophil IL-8 production, although MIP1-β production was only stimulated weakly, and MIP1-α was not stimulated at all.

Conclusions: Helicobacter pylori products in water extracts may have a role in the activation and migration of neutrophils, which results in enhanced oxidative damage to gastric mucosa. These findings may explain the pathology of H pylori induced gastritis, in which there is little invasion of bacteria into the gastric mucosa.

Helicobacter pylori infection induces chronic gastritis, which is characterised histologically by considerable neutrophil infiltration. Reactive oxygen species (ROS) produced by neutrophils are thought to play an important role in the oxidative damage to the gastric mucosa and the severe clinical outcome of H pylori induced chronic gastritis. Helicobacter pylori activates neutrophil oxidative metabolism and the surface proteins of H pylori, including H pylori neutrophil activating protein (HP-NAP), modulate ROS production in neutrophils. However, the stimulating and/or priming effects of the surface proteins of H pylori on the production of toxic oxidants by human neutrophils have not been fully investigated.

"Because Helicobacter pylori is non-invasive, bacterial surface proteins may play a role in the chronic active gastritis induced by this bacterium"

Human neutrophils can produce chemokines, which are a family of proinflammatory cytokines that have leukocyte chemotactic and activating properties. The chemokine superfamily has several subgroups including two major subgroups, the CXC and CC chemokines. The CXC chemokines primarily act on neutrophils, whereas the CC chemokines have functional effects on monocytes and lymphocytes. Infection with H pylori has been associated with increased concentrations of CXC and CC chemokines in the gastric mucosa. Previous studies showed that the surface proteins of H pylori stimulated the production of interleukin 8 (IL-8) and growth related oncogene (GRO) proteins, members of the CXC chemokines, by neutrophils. However, human neutrophils can also produce several CC chemokines in response to certain stimuli, such as macrophage inflammatory protein 1α (MIP-1α) and MIP-1β, which are CC chemokines that are chemotactic to T helper type 1 lymphocytes. Although human neutrophils produce MIP-1α and MIP-1β, the effects of H pylori on the production of MIP-1α and MIP-1β by human neutrophils have not been elucidated.

Because H pylori is non-invasive, bacterial surface proteins may play a role in the chronic active gastritis induced by this bacterium. Thus, it would be useful to understand the responses of neutrophils to stimulation by H pylori surface proteins. The aim of our study was to characterise the effects of H pylori water soluble surface proteins on the production of ROS and chemokines by human neutrophils.

MATERIALS AND METHODS
Preparation of neutrophil suspension
Neutrophils were isolated from six healthy volunteers using Histopaque density gradient separation (Sigma, St Louis, Michigan, USA). Briefly, peripheral blood samples were diluted twofold in Hank’s balanced salt solution (HBSS) and decanted on to an equal volume of Histopaque 1077 and 1119. After centrifugation at 500 g for 30 minutes at 4°C, the neutrophil fraction, located at the 1077–1119 interface, was harvested and washed with HBSS. This procedure yields a neutrophil population that is 96–99% viable (using trypan

Abbreviations: GRO, growth related oncogene; HBSS, Hank’s balanced salt solution; HP-NAP, Helicobacter pylori neutrophil activating protein; IL, interleukin; LmCL, luminol dependent chemiluminescence; MIP, macrophage inflammatory protein; MPO, myeloperoxidase; OZ, opsonised zymosan; ROS, reactive oxygen species
Neutrophil activation by *H pylori* water extracts

![Figure 1](image-url)
Figure 1 Luminol dependent chemiluminescence (LmCL) response pattern stimulated by *Helicobacter pylori* water extracts and *H pylori* cells. Stimulation of the production of neutrophil reactive oxygen species by *H pylori* cells depended on the concentration of the preincubation *H pylori* water extracts.

![Figure 2](image-url)
Figure 2 The peak value of the luminol dependent chemiluminescence (LmCL) response of neutrophils stimulated by *Helicobacter pylori* after 30 minutes of preincubation with *H pylori* water extracts. The highest LmCL response significantly correlated with the concentration of the water extracts ($r = 0.770; p < 0.001$). Data are the average of the results of two different experiments run in at least duplicate, and the bars represent SD.

RESULTS

Luminol dependent chemiluminescence response

Figure 1 shows a typical LmCL response pattern after preincubation with *H pylori* water extracts. *Helicobacter pylori* water extracts induced only a weak neutrophil oxidative burst (0–30 minutes) and no difference was seen in the highest value of the LmCL response between the various concentrations. In contrast, strong LmCL responses were seen when OZ was added after incubation with water extracts. The LmCL response stimulated by OZ was stronger when the cells had been preincubated with higher concentrations of water extracts.

Statistical analysis

One way analysis of variance was used to test for significance. Pair comparisons based on the Bonferroni's standard were used to compare the effects of different concentrations of water extracts. The correlation coefficient (r) was determined to assess the dose dependent effect. A p value of less than 0.05 was considered significant.

Chemokine production

The production of IL-8 by neutrophils was stimulated by *H pylori* water extracts (fig 3). When the *H pylori* water extracts contained 200 µg protein/ml, the mean concentration of IL-8 was 34.5 pg/ml, which was significantly higher than that seen when the concentrations of the *H pylori* water extracts were 0 and 20 µg protein/ml ($p < 0.01$). However, there was no significant correlation between the concentration of *H pylori* water extracts and amount of IL-8 produced.
produce ROS, even though the bacteria exist within the healing often seen in cigarette smokers. Considered to explain, at least in part, the delay in wound healing, the neutrophil priming effects of several substances, such as smoke, have been investigated. Primed neutrophils are capable of producing large amounts of ROS more rapidly than non-primed neutrophils. Increased ROS production by peripheral neutrophils has been shown in smokers and this is consistent with the observation that neutrophil production of CC chemokines (IL-8, GRO proteins) by neutrophils induced by water extracts of Helicobacter pylori was stimulated by neutrophils in a dose-dependent manner. These results are in accordance with previous studies, which showed upregulation of the expression of CXC chemokines (IL-8, GRO proteins) by neutrophils in response to H pylori water extracts. Such chemokine production by neutrophils is consistent with the observation that neutrophils incubated with water extracts before stimulation by opsonised zymosan showed increased responses.

In contrast, the effects of the H pylori water extracts on neutrophil production of CC chemokines were much weaker than that seen for the production of IL-8. MIP-1β was detectable (mean concentration, 12.3 pg/ml) in the neutrophils of three subjects when the concentration of the water extracts was 200 μg protein/ml, but it could not be detected when lower concentrations of protein were used. MIP-1α was not detected at all.

DISCUSSION

Infection with *H pylori* has been associated with peptic ulcer diseases and the development of gastric cancer. Increased oxidative DNA damage has been implicated in the carcinogenic process, and oxidative DNA damage is clearly seen in the gastroduodenal mucosa of patients with peptic ulcer diseases. Neutrophils are a major source of oxygen derived free radicals and *H pylori* induced gastritis is characterised histologically by chronic infiltration of neutrophils. *Helicobacter pylori* stimulated ROS production by neutrophils could be relevant in gastric mucosal damage. However, the histopathology of *H pylori* induced gastritis shows that this bacterium is non-invasive, so that it is hard to see how substances produced by *H pylori* could modulate the neutrophil oxidative burst. Several studies have examined the mechanisms involved in the production of ROS stimulated by *H pylori*. An early study demonstrated that water extracts of *H pylori* increased the expression of CD11b, which plays an important role in neutrophil phagocytic activity. Recently, the activation of neutrophil NADPH oxidase by HP-NAP was also demonstrated. In addition, the neutrophil priming effects of several substances, such as smoke, have been investigated. Primed neutrophils are capable of producing large amounts of ROS more rapidly than non-primed neutrophils. Increased ROS production by peripheral neutrophils has been shown in smokers and this is considered to explain, at least in part, the delay in wound healing often seen in cigarette smokers. In our present study, water extracts of *H pylori* induced only a weak LmCL response, whereas neutrophils incubated with water extracts before stimulation by OZ showed increased LmCL responses. These observations suggest that *H pylori* water extracts may have priming effects on human neutrophil ROS production. In the gastric mucosa, neutrophils usually produce ROS when they ingest foreign bodies. Therefore, to stimulate neutrophils, we used OZ, which is a phagocytic particle that binds to receptors on the neutrophil cell surface. Overall, our present results suggest that neutrophils that have infiltrated the gastric mucosa after *H pylori* infection have an enhanced capacity to produce ROS, even though the bacteria exist within the lumen.

The ROS detected by LmCL are mainly hypochlorites (HOCl/OCl−), which are generated by myeloperoxidase (MPO) activity caused by degranulation. In a recent study, the expression of MPO was found to be upregulated by water extracts of *H pylori*. Therefore, at least in part, the increased LmCL responses seen in neutrophils incubated with *H pylori* water extracts can be explained by the upregulation of MPO activity. A recent study showed that HP-NAP stimulated the production of H2O2 by neutrophils, but the response was slower than that seen with other stimulants. We also measured the LmCL response in the presence of water extracts before the addition of OZ but the measurement period was only 30 minutes. Longer incubation periods might show an increase in the LmCL response. However, MPO generated ROS are capable of causing more oxidative damage than H2O2 or superoxide. In particular, hypochlorous acid can react with ammonia, generated by *H pylori* urease activity, to produce a highly toxic molecule, monochloramine. Thus, the LmCL response would be a better method to examine *H pylori* associated oxidative stress than intracellular H2O2 production.

“Water extracts of Helicobacter pylori induced only a weak luminol dependent chemiluminescence response, whereas neutrophils incubated with water extracts before stimulation by opsonised zymosan showed increased responses.”

Human neutrophils can also produce several chemokines and the amounts and/or types of chemokines produced are differentially regulated by the species of pathogens or stimulants. In our previous study, *H pylori* cells stimulated the production of IL-8 by human neutrophils but did not stimulate the production of two CC chemokines, macrophage chemotactic protein 1 and RANTES. Therefore, in our present study, we examined the effects of *H pylori* water soluble extracts on the neutrophil production of IL-8 and different CC chemokines, MIP-1α and MIP-1β. The production of IL-8 by neutrophils was stimulated by *H pylori* water extracts in a dose-dependent manner. These results are in accordance with previous studies, which showed upregulation of the expression of CXC chemokines (IL-8, GRO proteins) by neutrophils in response to *H pylori* water extracts. *Helicobacter pylori* water extracts have been shown to have chemotactic effects on neutrophils, and the results suggested that water extracts might also stimulate neutrophils to produce CXC chemokines. In contrast, *H pylori* water extracts had weak or no stimulatory effects on the production of CC chemokines, MIP-1α and MIP-1β. Such chemokine production by neutrophils may play a role in the pathology of *H pylori* associated gastritis, which is characterised by chronic neutrophil infiltration. CXC chemokines are primarily chemotactic to neutrophils and mRNA expression of IL-8 and GROα correlates significantly with the degree of neutrophil infiltration in gastric mucosa infected with *H pylori*. Therefore, in *H pylori*...
Neutrophil activation by *H pylori* water extracts

induced gastritis, the neutrophil itself seems to contribute to further neutrophil migration into the gastric mucosa. These mechanisms may play a role in maintaining chronic neutrophil infiltration without the invasion of bacteria into the mucosa.

In conclusion, *H pylori* water extracts are capable of inducing human neutrophils to produce IL-8, but had few effects on the CC chemokines, MIP-1α and MIP-1β. Stimulated neutrophils may play a role in the persistent neutrophil infiltration seen in the gastric mucosa infected with *H pylori*. *Helicobacter pylori* water extracts also prime human neutrophils for enhanced ROS production. These effects of *H pylori* water extracts may participate in *H pylori* induced gastritis, which is characterised by neutrophil infiltration and increased oxidative damage without the invasion of bacteria.

Authors’ affiliations

T Shimoyama, S Fukuda, First Department of Internal Medicine, Hirosaki University School of Medicine, S Zaifu-cho, Hirosaki 036–8562, Japan

Q Liu, S Nakaji, K Sugawara, Department of Hygiene, Hirosaki University School of Medicine

Y Fukuda, Fourth Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Japan

REFERENCES

Helicobacter pylori water soluble surface proteins prime human neutrophils for enhanced production of reactive oxygen species and stimulate chemokine production

T Shimoyama, S Fukuda, Q Liu, S Nakaji, Y Fukuda and K Sugawara

J Clin Pathol 2003 56: 348-351
doi: 10.1136/jcp.56.5.348

Updated information and services can be found at:
http://jcp.bmj.com/content/56/5/348

These include:

References
This article cites 20 articles, 9 of which you can access for free at:
http://jcp.bmj.com/content/56/5/348#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Immunology (including allergy) (1664)
Stomach and duodenum (105)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/