Dietary salicylates

L G Hare, J V Woodside, I S Young

Another benefit of fruit and vegetable consumption?

There is overwhelming epidemiological evidence that a high consumption of fruit and vegetables is associated with reduced mortality from cardiovascular disease, cancer, and other causes. In part, this may simply indicate that high fruit and vegetable consumption is a marker of a healthy lifestyle, but there is also strong evidence from in vitro studies and clinical trials that micronutrients and other components of fruit and vegetables have beneficial biological effects. Most attention has focused on antioxidants, B group vitamins, minerals, and fibre, but several strands of evidence now indicate that increased intake of salicylates may be another benefit of fruit and vegetable consumption.

In this issue of the journal, Lawrence and colleagues show that urinary excretion of salicylic acid (SA) is significantly increased in vegetarians compared with non-vegetarians. They previously reported that serum SA was also significantly increased in vegetarians compared with non-vegetarians. Interestingly, urinary excretion of SA was similar in vegetarians and patients consuming 75 or 150 mg of aspirin/day, although SU excretion was substantially greater in vegetarians compared with non-vegetarians. Excretion of salicylates is still no common agreement about its mechanisms of action. Aspirin acts by preventing the conversion of arachidonic acid to the cyclic prostaglandins via inhibition of the enzyme cyclooxygenase (COX) through acetylation of an essential serine at its active site. There are two main COX isomers, COX-1 and COX-2. COX-1 is constitutively expressed in most cells (including platelets) and, among other functions, is essential for the production of thromboxane A₂, which causes platelet aggregation. COX-2 is not routinely expressed in cells, but is induced rapidly by inflammatory stimuli and growth factors, and is the major isoform responsible for prostaglandin biosynthesis in inflamed tissue. Aspirin acts on both forms but is a less potent inhibitor of COX-2. Inhibition of COX-1 is achieved by acetylation of serine 530, which is located close to the active site (tyrosine 385 of COX-1). Acetylation of this serine residue hinders the access of arachidonic acid to the active site. Aspirin inhibits COX-2 by a similar mechanism, but is less potent because the substrate channel of COX-2 is larger and more flexible than that of COX-1. Mitchell et al, using a variety of in vitro models, suggested that aspirin inhibition of COX-1 was between 25 and 166 times greater than inhibition of COX-2.

In contrast to aspirin, salicylic acid has virtually no effect on purified COX-1 and COX-2 at pharmacological concentrations, but inhibits prostaglandin synthesis in intact cells. The mechanism by which salicylic acid inhibits COX-2 is the subject of much current debate. One possibility for which there is experimental evidence is that salicylic acid at therapeutic concentrations may suppress COX-2 gene transcription by inhibiting COX-2 mRNA synthesis and COX-2 promoter activity. As such, with respect to its role as an anti-inflammatory agent, aspirin could be acting as a prodrug for salicylic acid, which has a much longer half life than aspirin.

The presence of naturally occurring salicylates in fruits, vegetables, spices, confectionaries, and beverages (both alcoholic and non-alcoholic) has been confirmed by several research groups, although concentrations determined do not always agree. Swain et al suggested that a normal mixed diet contains total salicylates in the range of 10 to 200 mg/day, although other groups have suggested that this may be an overestimate owing to a lack of analytical specificity. Janssen et al suggested that intake of dietary salicylates in subjects taking a mixed diet was only in the order of 2 to 4 mg/day, an amount probably too low to affect disease risk. However, the work reported here and previously indicates that dietary salicylate intake may be significant in vegetarians and can produce concentrations of SA that overlap with those seen in subjects taking 75 mg of aspirin/day. Because the anti-inflammatory action of aspirin is probably the result of SA, and the concentrations of SA seen in vegetarians have been shown to inhibit COX-2 in vitro, it is plausible that dietary salicylates may contribute to the beneficial effects of a vegetarian diet, although it seems unlikely that most people who consume a mixed diet will achieve sufficient dietary intake of salicylates to have a therapeutic effect.

REFERENCES

13 Miners JO. Drug interactions involving aspirin (acetylsalicylic acid) and salicylic acid. Clin Pharmacokinet 1989;17:5:327-44.
22 Serhan CN. Lipoxins and aspirin-triggered 15-epi-lipoxin biosynthesis: an update and role in anti-inflammation and pro-resolution.

Prostaglandins Other Lipid Mediat 2002;68/69:433-55.
Dietary salicylates

L G Hare, J V Woodside and I S Young

doi: 10.1136/jcp.56.9.649

Updated information and services can be found at:
http://jcp.bmj.com/content/56/9/649

These include:

References
This article cites 26 articles, 12 of which you can access for free at:
http://jcp.bmj.com/content/56/9/649#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Immunology (including allergy) (1664)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/