Relation between lymphopenia and bacteraemia in UK adults with medical emergencies

D H Wyllie, I C J W Bowler, T E A Peto

Aims: To determine the relevance of lymphopenia to the diagnosis of bacteraemia in patients admitted with medical emergencies, relative to peripheral blood white cell count and neutrophilia.

Patients/Methods: A two year cohort study carried out in a teaching hospital in Oxford, UK of 21 495 consecutive adult emergency admissions to general medical or infectious disease wards. Full blood data were available in 21 372 cases; 41 cases with extreme full blood count results (neutrophil count, > 75 x 10^9/litre; lymphocyte count, > 10 x 10^9/litre) were excluded, leaving 21 331 cases for analysis. The association between the admission lymphocyte and neutrophil counts and the risk of bacteraemia was assessed.

Results: Neutrophilia and lymphopenia were both associated with bacteraemia. Lymphopenia was the better predictor in this cohort. Both neutrophilia and lymphopenia were more predictive of bacteraemia than the total white blood cell count.

Conclusions: Both lymphocyte and neutrophil counts, rather than total white blood cell count, should be considered in adult medical admissions with suspected bacteraemia.

Abbreviations:
AUC, area under the curve; HIV, human immunodeficiency virus; ROC, receiver operating characteristic; WBC, white blood cell count.
In our cohort, the peripheral lymphocyte count declined with age (fig 2), as described previously.13 14 However, at all ages, the lymphocyte count was highest in those in whom cultures were not performed, intermediate in those in whom cultures were taken but no significant isolate obtained, and lowest in the patients with bacteraemia (fig 2A).

Change in lymphocyte count during admission

We considered whether the lymphopenia that we observed was, as predicted by experimental data,1 2 a transient phenomenon, or whether it represented a pre-existing condition predisposing to bacteraemia. Admission blood counts were compared with the last count taken during the admission. Figure 2 shows that, during admission, both the admission neutrophilia and lymphopenia seen in the patients with bacteraemia declined, compatible with both changes being a response to bacteraemia.

Lymphocyte and neutrophil counts and bacteraemia risk

The observed odds of bacteraemia (the number of patients with bacteraemia/number without bacteraemia) were calculated for the 7182 patients whose blood had been cultured, stratified by lymphocyte and neutrophil count. Table 2 shows the absolute numbers of patients in each stratum. In fig 3, a surface is drawn through the observed bacteraemia odds. As expected, odds of bacteraemia increased with increasing neutrophil count. However, there was also a pronounced increase in bacteraemia odds as the lymphocyte count declined below 1.5 × 10^9/litre, an effect evident at all neutrophil counts. This suggests that neutrophilia and lymphopenia independently predict bacteraemia.

Lymphocyte counts less than 0.25 × 10^9/litre, referred to here as extreme lymphopenia, identified the group with the highest risk of bacteraemia. This is evident from fig 4, which shows an alternative representation of the data in fig 3. Extreme lymphopenia was found in 12% (63 of 530) of the patients with bacteraemia, but only 2.4% (162 of 6652) of the patients without significant isolates. Extreme lymphopenia, similar to less severe lymphopenia, appears to recover during hospital stay: the mean difference between admission and predischarge lymphocyte counts was 0.62 × 10^9/litre (95% confidence interval, 0.48 to 0.76) with extreme lymphopenia, and 0.36 × 10^9/litre (95% confidence interval, 0.29 to 0.43) without extreme lymphopenia.

Interestingly, in the extreme lymphopenic group, the strength of the association of bacteraemia with the neutrophil count appears to be less than that at higher lymphocyte counts. Mathematically, this would represent an interaction between neutrophil and lymphocyte counts. To investigate this further, and to examine the effect of age, logistic regression was performed. Univariate logistic regression

Table 1 Blood culture isolates obtained

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>18–29</th>
<th>30–39</th>
<th>40–49</th>
<th>50–59</th>
<th>60–69</th>
<th>70–79</th>
<th>80–89</th>
<th>≥90</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not cultured</td>
<td>1369</td>
<td>1238</td>
<td>1270</td>
<td>1575</td>
<td>2030</td>
<td>3051</td>
<td>2869</td>
<td>766</td>
<td>14168</td>
</tr>
<tr>
<td>No significant isolates</td>
<td>639</td>
<td>586</td>
<td>552</td>
<td>595</td>
<td>815</td>
<td>1468</td>
<td>1553</td>
<td>460</td>
<td>6668</td>
</tr>
<tr>
<td>Coagulase negative staphylococci</td>
<td>29</td>
<td>28</td>
<td>35</td>
<td>57</td>
<td>79</td>
<td>124</td>
<td>132</td>
<td>36</td>
<td>520</td>
</tr>
<tr>
<td>Diphteroids</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>12</td>
<td>11</td>
<td>5</td>
<td>39</td>
</tr>
<tr>
<td>All significant isolates</td>
<td>38</td>
<td>35</td>
<td>27</td>
<td>38</td>
<td>57</td>
<td>151</td>
<td>157</td>
<td>33</td>
<td>536</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>15</td>
<td>50</td>
<td>49</td>
<td>11</td>
<td>146</td>
</tr>
<tr>
<td>Other Enterobacteraeae and pseudomonas spp</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>11</td>
<td>11</td>
<td>5</td>
<td>39</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>11</td>
<td>7</td>
<td>18</td>
<td>22</td>
<td>1</td>
<td>77</td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>11</td>
<td>1</td>
<td>54</td>
</tr>
<tr>
<td>β Haemolytic streptococci</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>11</td>
<td>11</td>
<td>1</td>
<td>33</td>
</tr>
<tr>
<td>Anaerobes</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Fungi</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

The numbers of cases cultured and the culture results are shown, stratified by age.
showed that the neutrophil count, the lymphocyte count, and their interaction were strongly associated, and age and WBC were weakly associated with bacteraemia (table 3). WBC was not used in multivariate modelling because of a strong correlation with neutrophil count. Of the other variables, neutrophil count, lymphocyte count, their interaction, but not age, remained significant on multivariate analysis (table 3).

Comparison of counts in bacteraemia prediction
Single variables associated with disease are simple to use clinically, and are potentially of diagnostic value. The 7182 blood cultured cases were examined, both as a whole, and in age stratified bands, and a comparison was made of the ability of raised WBC, depressed lymphocyte count, and raised neutrophil count to predict bacteraemia using ROC plotting. A significantly higher AUC, a parameter reflecting discriminatory ability, was found for lymphocyte count compared with either WBC or neutrophil count (fig 5). This effect was also evident in age stratified analysis; the lymphocyte count performed significantly better than the WBC or neutrophil count in all but one of the strata examined (table 4).

DISCUSSION
Our study describes the quantitative association between lymphopenia and the risk of bacteraemia in a large cohort of patients admitted to a UK hospital with medical emergencies. Both lymphopenia and neutrophilia are independently associated with bacteraemia, and there is a group of patients...
who are lymphopenic, and at very high risk of bacteraemia, whose total WBC and neutrophil counts lie within the normal range. The lymphopenia–bacteraemia association was seen in patients at all ages studied.

Our observations are compatible with reports from smaller series of elderly patients describing lymphocyte counts less than 1×10^9/litre as being associated with bacteraemia. An association of bacteraemia and lymphopenia may also explain the associations between lymphopenia and disease severity in nursing home residents with pneumonia, and surgical patients after emergency laparotomy. Our observations are also compatible with the rapid decline in blood lymphocyte count occurring in animal and human models of sepsis. Bacterial sepsis was an important cause of lymphopenia in the population studied, but lymphopenia is not specific for sepsis of bacterial origin, because it also occurs in severe viral infections.

Although the hospital in which the study was performed is a tertiary referral centre, the study cohort comprised individuals admitted from the community as an emergency. As such, they are likely to be representative of emergency medical admissions in the UK. Their microbiological investigation was probably typical of that widely practiced, because the proportion of patients cultured in this cohort was similar to that reported from a comparable cohort in another European hospital.

HIV associated lymphopenia might complicate the observed association between lymphopenia and bacteraemia. However, HIV prevalence, determined by an unlinked seroprevalence study, was about 1/1000 during the study, and the lymphopenia–bacteraemia association was seen at all ages, including the elderly, in whom HIV is extremely rare in Oxfordshire, so HIV related changes in WBC are unlikely to be an important confounder.

We used a stringent definition of significant bacteraemia, regarding all isolates except Corynebacterium spp or coagulase negative staphylococci as significant for the purpose of our study. Therefore, our definition will classify many organisms, including α haemolytic streptococci and enterococci, as significant. Although such organisms are sometimes associated with serious pathology, their isolation may also be of little importance, especially when only isolated from a single culture. A chart review could have been used to determine the probable relevance of individual cases. However, this process is often subjective, so we persisted with a stringent definition, which probably led to an underestimation of the true lymphopenia–bacteraemia association.

"The clinical usefulness of lymphopenia as a diagnostic and prognostic marker merits further investigation in other centres and populations."
apoptosis, as reviewed previously.20 The decline in lymphocyte numbers seen in our study is probably the result of large scale lymphocyte apoptosis, which has been seen in several animal models of sepsis,21 22 in the spleens of humans who have died of sepsis,23 and in the peripheral blood of patients with sepsis.6 23–25 Interestingly, CD4 T helper type 1 and 2 cells may be differentially susceptible.25 26 The study of mice with genetic abnormalities of the apoptotic machinery, and of mice treated with apoptosis inhibitors, 27 28 shows that lymphocyte apoptosis influences mortality in sepsis. This is probably because protective lymphocyte dependent immune responses24 are decreased by the widespread death of lymphocytes. These studies imply that the decline in peripheral blood lymphocyte numbers seen in our study is the result of a key pathogenic mechanism in sepsis.

The data presented in our paper show that, in populations with a high prevalence of bacterial infections, lymphopenia may reflect bacteraemia. Importantly, in our large cohort, lymphopenia performed significantly better than either neutrophil count or WBC in bacteraemia prediction, although these last two markers are very widely used in the assessment of infected patients. Therefore, the clinical usefulness of lymphopenia as a diagnostic and prognostic marker merits further investigation in other centres and populations, both

Table 3 Logistic regression relating significant bacteraemia to full blood count

<table>
<thead>
<tr>
<th>Culture negative (n = 6652)</th>
<th>Culture positive (n = 530)</th>
<th>Univariate</th>
<th>Multivariate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Age</td>
<td>64.3</td>
<td>21.5</td>
<td>68.4</td>
</tr>
<tr>
<td>WBC (×10⁹/l)</td>
<td>11.3</td>
<td>7.4</td>
<td>14.2</td>
</tr>
<tr>
<td>Lymphocytes (×10⁹/l)</td>
<td>1.30</td>
<td>0.90</td>
<td>0.85</td>
</tr>
<tr>
<td>Neutrophils (×10⁹/l)</td>
<td>8.9</td>
<td>5.2</td>
<td>12.4</td>
</tr>
<tr>
<td>Neutrophil–lymphocyte interaction</td>
<td>2.4</td>
<td>6.9</td>
<td>6.9</td>
</tr>
</tbody>
</table>

Univariate and multivariate logistic regression of admission peripheral blood count with blood culture positivity. Wald refers to the Wald statistic. CI, confidence interval; OR, odds ratio; WBC, white blood cell count.

Table 4 AUCs (95% CI) for the discrimination of patients with bacteraemia from those without bacteraemia

<table>
<thead>
<tr>
<th>Age</th>
<th>Lymphocytopenia</th>
<th>Neutrophilia</th>
<th>Raised total WBC</th>
</tr>
</thead>
<tbody>
<tr>
<td><50</td>
<td>0.69 (0.66 to 0.72)</td>
<td>0.56 (0.53 to 0.59)**</td>
<td>0.52 (0.49 to 0.55)**</td>
</tr>
<tr>
<td>50–69</td>
<td>0.67 (0.64 to 0.70)</td>
<td>0.63 (0.60 to 0.68)*</td>
<td>0.59 (0.56 to 0.63)*</td>
</tr>
<tr>
<td>70–79</td>
<td>0.67 (0.64 to 0.71)</td>
<td>0.67 (0.65 to 0.70)</td>
<td>0.65 (0.62 to 0.67)*</td>
</tr>
<tr>
<td>>80</td>
<td>0.68 (0.66 to 0.70)</td>
<td>0.63 (0.61 to 0.66)**</td>
<td>0.62 (0.60 to 0.64)**</td>
</tr>
<tr>
<td>All cases</td>
<td>0.69 (0.67 to 0.72)</td>
<td>0.63 (0.61 to 0.66)**</td>
<td>0.60 (0.57 to 0.62)**</td>
</tr>
</tbody>
</table>

WBC components predicting bacteraemia stratified by age. AUCs were calculated for different age groups, comparing the ability of lymphocytopenia, neutrophilia, and raised total WBC to discriminate patients with bacteraemia from those without. Higher AUCs indicate better discrimination. Comparisons were made between the lymphocytopenia AUCs and neutrophilia or WBC AUCs. *p<0.05; **p<0.01 (comparisons made by Z testing). AUC, area under the receiver operator characteristic plot; CI, confidence interval; WBC, white blood cell count.

Take home messages

- In a cohort of adult medical admissions with suspected bacteraemia, neutrophilia and lymphopenia were both associated with bacteraemia, although lymphopenia was the better predictor.
- Both neutrophilia and lymphopenia were more predictive of bacteraemia than the total white blood cell count.

Table 5 White cell count (WCC) components predicting bacteraemia. A receiver operator characteristic plot is shown, illustrating the ability of admission WCC, neutrophil count, and lymphocyte count to predict bacteraemia among all 7182 patients in whom blood cultures were taken. The symbols on the curve indicate the positions of particular counts; for example, the circle 1.0 indicates the performance of a lymphocyte count of 1.0 ×10⁹/litre. Areas under the curve, and their confidence intervals (CI), are shown in the box for each variable. Higher areas under the curve indicate better discrimination.

Figure 5 AUCs for the discrimination of patients with bacteraemia from those without bacteraemia.
alone and in combination with other laboratory measures of the acute phase response. 29 30

ACKNOWLEDGEMENTS

We thank Professor J Wainscoat and Drs A Berendt, N Day, P Klenerman, and E Torok for helpful comments.

Authors’ affiliations

T E A Peto, Nuffield Departments of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK

D H Wylie, I C J W Bowler, Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital

REFERENCES

Relation between lymphopenia and bacteraemia in UK adults with medical emergencies

D H Wyllie, I C J W Bowler and T E A Peto

J Clin Pathol 2004 57: 950-955
doi: 10.1136/jcp.2004.017335

Updated information and services can be found at:
http://jcp.bmj.com/content/57/9/950

These include:

References
This article cites 29 articles, 8 of which you can access for free at:
http://jcp.bmj.com/content/57/9/950#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Immunology (including allergy) (1664)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/