Presence of vascular adventitial fibroblastic cells in diffuse-type gastric carcinomas

H Nakayama, H Enzan, E Miyazaki, N Kuroda, M Toi, M Hiroi, W Yasui


Aim: To investigate morphological changes in the tumour vessel adventitia, particularly the distribution of vascular adventitial fibroblastic cells (VAFCs)—namely, CD34 positive fibroblastic cells just outside the vascular media—in diffuse-type gastric carcinomas.

Method: In total, 18 surgically resected advanced typical diffuse-type gastric carcinomas and their normal tissues were examined. Immunostaining for CD34, CD31, high molecular weight caldesmon (HCD), and cytokeratin 8 (CAM5.2) was performed to detect VAFCs. VAFCs are positive for CD34 but negative for CD31, and are located just outside the vascular media (HCD positive vascular smooth muscle bundle). The areas just outside the vascular media in the whole maximum tumour cut surface were assessed, except the tumour growing edge, which was confirmed by immunostaining with CAM5.2. CD34 positive and CD31 negative cells just outside the vascular media were defined as VAFCs.

Results: VAFC containing vessels were seen in 17 of the 18 diffuse carcinoma tissues. Vessels lacking VAFCs were also detected in these 17 tumours. In contrast, all of the vessels lacked VAFCs in the remaining tumour. In the 18 samples of normal tissue, all of the vessels contained VAFCs.

Conclusions: These results suggest that the presence of VAFCs is associated with the infiltration of diffuse scattered gastric carcinoma cells.
vascular media, and VAFCs in each specimen precisely —vascular endothelial cells are positive for CD34 and CD31; vascular smooth muscle cells are positive for HCD. We regarded CD34 positive and CD31 negative cells just outside the vascular media (HCD positive vascular smooth muscle bundle) to be VAFCs. As in our recent studies of gastric cancer, immunostaining for cytokeratin 8 was also performed to define the tumour growing edge in every specimen examined.

As we have already noted, it is impossible to discriminate tumour vessels from pre-existing normal vessels in tumour tissues of diffuse-type gastric carcinomas, so we assessed all vessels in the whole maximum tumour cut surface except the growing edge. The tumours were classified into two groups, namely: (+), presence of VAFC containing vessels in diffuse-type gastric carcinoma; and (−), absence of VAFC containing vessels in diffuse-type gastric carcinoma. Quantitative analysis was not performed.

RESULTS

Table 1 summarises the results.

VAFC (CD34 positive and CD31 negative stromal cells just outside the vascular media (HCD-positive vascular smooth muscle bundle)) containing vessels were detected in 17 of the 18 diffuse-type advanced gastric carcinoma tissues; these 17 diffuse-type carcinomas had VAFC containing vessels in the tumour tissues (figs 1–3) classified as (+). These 17 tumours also had vessels without VAFCs. No VAFC containing vessels were found in the remaining tumour, which was classified as (−).

With regard to the depth of tumour invasion, four of the five diffuse carcinomas with invasion to the muscularis propria had VAFC containing vessels, and all of the 13 diffuse carcinomas with invasion to the subserosa had VAFC containing vessels.

All of the vessels in the 18 normal gastric tissues examined had VAFCs just outside the vascular media; all vessels contained VAFCs. The results regarding the normal gastric tissues agreed with our recent study.

DISCUSSION

Recently, the role of the adventitia has received considerable attention in several pathological conditions of the cardiovascular system, including arteritis and atherosclerosis of coronary arteries and autologous saphenous vein grafts; adventitial fibroblasts contribute to neointima formation and vascular remodelling. However, the role of the vascular adventitia in tumours has not been studied extensively—the only published studies being our two recent reports on the alteration of tumour vascular adventitia in intestinal-type and solid-type gastric carcinomas and subcutaneous vascular leiomyomas.

It is impossible to differentiate tumour vessels from normal vessels involved in carcinomas. Therefore, we were unable to confirm whether the VAFC containing vessels within tumour tissues were tumour vessels, pre-existing normal vessels (involved within tumour tissues), or both. In our present study, we focused on the relation between VAFCs and diffuse-type gastric carcinomas. Diffuse-type gastric carcinomas have both VAFC containing vessels and VAFC lacking

<table>
<thead>
<tr>
<th>Depth of tumour invasion</th>
<th>Number of cases</th>
<th>VAFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muscularis propria</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Subserosa</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td>10</td>
</tr>
</tbody>
</table>

(+), presence of VAFC containing vessels within diffuse-type gastric carcinoma; (−), absence of VAFC containing vessels within diffuse-type gastric carcinoma.

Figure 1 The presence of vascular adventitial fibroblastic cells in diffuse-type gastric carcinoma tissue. CD34 positive fibroblastic cells (vascular adventitial fibroblastic cells) are seen just outside the vascular media.

Figure 2 Diffuse-type gastric carcinoma tissue: staining for CD31 to distinguish CD34 positive stromal cells from vascular endothelial cells.

Figure 3 Diffuse-type gastric carcinoma tissue: staining for high molecular weight caldesmon to highlight the vascular media.
vessels, whereas intestinal-type and solid-type gastric carcinomas have no VAFCs containing vessels. These results suggest that the formation of both carcinomatous glands and solid tumour nests is associated with the lack of VAFCs, whereas diffuse scattered infiltrative growth of carcinoma cells is associated with the presence of VAFCs.

“Our results suggest that the formation of both carcinomatous glands and solid tumour nests is associated with the lack of vascular adventitial fibroblastic cells (VAFCs), whereas diffuse scattered infiltrative growth of carcinoma cells is associated with the presence of VAFCs.”

On the basis of our recent paper,7 and our present results, we hypothesise that all VAFCs containing vessels in diffuse-type gastric carcinomas are pre-existing normal vessels, and that all VAFC lacking vessels in diffuse-type, intestinal-type, and solid-type gastric carcinomas are tumour vessels; in general, tumour vessels lack VAFCs. Accordingly, using the present hypothesis, 17 of the present 18 diffuse-type gastric carcinomas had VAFC containing vessels, namely pre-existing normal vessels entrapped by tumour tissues.

In conclusion, CD34 positive stromal cells just outside the vascular media, namely VAFCs, were detected in advanced diffuse-type gastric carcinomas, suggesting that the presence of VAFCs is associated with the infiltration of diffuse scattered gastric carcinoma cells. To elucidate the pathobiological relevance of the presence of VAFCs in diffuse-type gastric carcinomas, further molecular and biological investigations are needed.

ACKNOWLEDGEMENTS
The authors are grateful to Ms H Yamasaki, Ms M Yamamoto, Mr T Tokaji, and Mr Y Hayashi, Department of Pathology, Kochi Medical School, for their excellent technical assistance.

Authors’ affiliations
H Nakayama, W Yasui, Department of Molecular Pathology, Graduate School of Biomedical Sciences, Hiroshima University, 1–2–3 Kasumi, Minami-ku, Hiroshima 734–8551, Japan
H Enzan, E Miyazaki, N Kuroda, M Toi, M Hiroi, Department of Pathology, Kochi Medical School, Kohasu, Okoh-cho, Nankoku, Kochi 783–8505, Japan

REFERENCES
Presence of vascular adventitial fibroblastic cells in diffuse-type gastric carcinomas

H Nakayama, H Enzan, E Miyazaki, N Kuroda, M Toi, M Hiroi and W Yasui

J Clin Pathol 2004 57: 970-972
doi: 10.1136/jcp.2004.017137

Updated information and services can be found at:
http://jcp.bmj.com/content/57/9/970

These include:

References
This article cites 14 articles, 9 of which you can access for free at:
http://jcp.bmj.com/content/57/9/970#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Pancreatic cancer (121)
Immunology (including allergy) (1664)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/